60 resultados para non-standard neutrino interactions
Resumo:
Foods are complex biological materials, and the lipids within the food are susceptible to lipid oxidation, which is retarded by antioxidants. The precise structure and composition of the food may affect the antioxidant activity quite strongly in some cases. Solubility of the antioxidant in the phases present is one of the main parameters that affects the variation in antioxidant activity with phase composition of food. Polar antioxidants are more effective in oils, whereas non-polar antioxidants are more effective in oil-in-water emulsions. Antioxidant activity has been reported in a range of different media, including oils, emulsions, liposomes, microemulsions, fish and meat muscles, and the antioxidant activity may vary from one medium to another. Synergy between antioxidants may also vary from one medium to another. Interactions with metals and with proteins affect antioxidant activity and these interactions are also dependent on the phases present.
Resumo:
New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.
Resumo:
The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.
Resumo:
A semiochemical based push-pull strategy for control of oilseed rape pests is being developed at Rothamsted Research. This strategy uses insect and plant derived semiochemicals to manipulate pests and their natural enemies. An important element within this strategy is an understanding of the importance of non-host plant cues for pest insects and how such signals could be used to manipulate their behaviour. Previous studies using a range of non-host plants have shown that, for the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae), the essential oil of lavender, Lavandula angustifolia (Lamiaceae), was the most repellent. The aim of this study was to identify the active components in L. angustifolia oil, and to investigate the behaviour of M. aeneus to these chemicals, to establish the most effective use of repellent stimuli to disrupt colonisation of oilseed rape crops. Coupled gas chromatography-electroantennography (GC-EAG) and gas chromatography-mass spectrometry (GC-MS) resulted in the identification of seven active compounds which were tested for behavioural activity using a 4-way olfactometer. Repellent responses were observed with (±)-linalool and (±)-linalyl acetate. The use of these chemicals within a push-pull pest control strategy is discussed.
Resumo:
What is at stake when J. L. Austin calls poetry ‘non-serious’, and sidelines it in his speech act theory? (I). Standard explanations polarize sharply along party lines: poets (e.g. Geoffrey Hill) and critics (e.g. Christopher Ricks) are incensed, while philosophers (e.g. P. F. Strawson; John Searle) deny cause (II). Neither line is consistent with Austin's remarks, whose allusions to Plato, Aristotle and Frege are insufficiently noted (III). What Austin thinks is at stake is confusion, which he corrects apparently to the advantage of poets (IV). But what is actually at stake is the possibility of commitment and poetic integrity. We should reject what Austin offers (V).
Resumo:
The recent increase in short messaging system (SMS) text messaging, often using abbreviated, non-conventional ‘textisms’ (e.g. ‘2nite’), in school-aged children has raised fears of negative consequences of such technology for literacy. The current research used a paradigm developed by Dixon and Kaminska, who showed that exposure to phonetically plausible misspellings (e.g. ‘recieve’) negatively affected subsequent spelling performance, though this was true only with adults, not children. The current research extends this work to directly investigate the effects of exposure to textisms, misspellings and correctly spelledwords on adults’ spelling. Spelling of a set of key words was assessed both before and after an exposure phase where participants read the same key words, presented either as textisms (e.g. ‘2nite’), correctly spelled (e.g. ‘tonight’) or misspelled (e.g. 'tonite’)words. Analysis showed that scores decreased from pre- to post-test following exposure to misspellings, whereas performance improved following exposure to correctly spelled words and, interestingly, to textisms. Data suggest that exposure to textisms, unlike misspellings, had a positive effect on adults’ spelling. These findings are interpreted in light of other recent research suggesting a positive relationship between texting and some literacy measures in school-aged children.
Resumo:
Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.
Resumo:
The existence of hand-centred visual processing has long been established in the macaque premotor cortex. These hand-centred mechanisms have been thought to play some general role in the sensory guidance of movements towards objects, or, more recently, in the sensory guidance of object avoidance movements. We suggest that these hand-centred mechanisms play a specific and prominent role in the rapid selection and control of manual actions following sudden changes in the properties of the objects relevant for hand-object interactions. We discuss recent anatomical and physiological evidence from human and non-human primates, which indicates the existence of rapid processing of visual information for hand-object interactions. This new evidence demonstrates how several stages of the hierarchical visual processing system may be bypassed, feeding the motor system with hand-related visual inputs within just 70 ms following a sudden event. This time window is early enough, and this processing rapid enough, to allow the generation and control of rapid hand-centred avoidance and acquisitive actions, for aversive and desired objects, respectively
Resumo:
The present paper presents a simple theory for the transformation of non-precipitating, shallow convection into precipitating, deep convective clouds. In order to make the pertinent point a much idealized system is considered, consisting only of shallow and deep convection without large–scale forcing. The transformation is described by an explicit coupling between these two types of convection. Shallow convection moistens and cools the atmosphere, whereas deep convection dries and warms, leading to destabilization and stabilization respectively. Consequently, in their own stand–alone modes, shallow convection perpetually grows, whereas deep convection simply damps: the former never reaches equilibrium, and the latter is never spontaneously generated. Coupling the modes together is the only way to reconcile these undesirable separate tendencies so that the convective system as a whole can remain in a stable periodic state under this idealized setting. Such coupling is a key missing element in current global atmospheric models. The energy–cycle description as originally formulated by Arakawa and Schubert, and presented herein is suitable for direct implementation into models using a mass–flux parameterization, and would alleviate the current problems with the representation of these two types of convection in numerical models. The present theory also provides a pertinent framework for analyzing large–eddy simulations and cloud–resolving modelling.
Resumo:
Aims: Quinolone antibiotics are the agents of choice for treating systemic Salmonella infections. Resistance to quinolones is usually mediated by mutations in the DNA gyrase gene gyrA. Here we report the evaluation of standard HPLC equipment for the detection of mutations (single nucleotide polymorphisms; SNPs) in gyrA, gyrB, parC and parE by denaturing high performance liquid chromatography (DHPLC). Methods: A panel of Salmonella strains was assembled which comprised those with known different mutations in gyrA (n = 8) and fluoroquinolone-susceptible and -resistant strains (n = 50) that had not been tested for mutations in gyrA. Additionally, antibiotic-susceptible strains of serotypes other than Salmonella enterica serovar Typhimurium strains were examined for serotype-specific mutations in gyrB (n = 4), parC (n = 6) and parE (n = 1). Wild-type (WT) control DNA was prepared from Salmonella Typhimurium NCTC 74. The DNA of respective strains was amplified by PCR using Optimase (R) proofreading DNA polymerase. Duplex DNA samples were analysed using an Agilent A1100 HPLC system with a Varian Helix (TM) DNA column. Sequencing was used to validate mutations detected by DHPLC in the strains with unknown mutations. Results: Using this HPLC system, mutations in gyrA, gyrB, parC and parE were readily detected by comparison with control chromatograms. Sequencing confirmed the gyrA predicted mutations as detected by DHPLC in the unknown strains and also confirmed serotype-associated sequence changes in non-Typhimurium serotypes. Conclusions: The results demonstrated that a non-specialist standard HPLC machine fitted with a generally available column can be used to detect SNPs in gyrA, gyrB, parC and parE genes by DHPLC. Wider applications should be possible.
Resumo:
We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.
Resumo:
The FunFOLD2 server is a new independent server that integrates our novel protein–ligand binding site and quality assessment protocols for the prediction of protein function (FN) from sequence via structure. Our guiding principles were, first, to provide a simple unified resource to make our function prediction software easily accessible to all via a simple web interface and, second, to produce integrated output for predictions that can be easily interpreted. The server provides a clean web interface so that results can be viewed on a single page and interpreted by non-experts at a glance. The output for the prediction is an image of the top predicted tertiary structure annotated to indicate putative ligand-binding site residues. The results page also includes a list of the most likely binding site residues and the types of predicted ligands and their frequencies in similar structures. The protein–ligand interactions can also be interactively visualized in 3D using the Jmol plug-in. The raw machine readable data are provided for developers, which comply with the Critical Assessment of Techniques for Protein Structure Prediction data standards for FN predictions. The FunFOLD2 webserver is freely available to all at the following web site: http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html.
Resumo:
Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).
Resumo:
Charged aerosol particles and water droplets are abundant throughout the lower atmosphere, and may influence interactions between small cloud droplets. This note describes a small, disposable sensor for the measurement of charge in non-thunderstorm cloud, which is an improvement of an earlier sensor [K. A. Nicoll and R. G. Harrison, Rev. Sci. Instrum. 80, 014501 (2009)]. The sensor utilizes a self-calibrating current measurement method. It is designed for use on a free balloon platform alongside a standard meteorological radiosonde, measuring currents from 2 fA to 15 pA and is stable to within 5 fA over a temperature range of 5 °C to −60 °C. During a balloon flight with the charge sensor through a stratocumulus cloud, charge layers up to 40 pC m−3 were detected on the cloud edges.
Resumo:
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.