45 resultados para non-exhaustible energy
Resumo:
This study examines, in a unified fashion, the budgets of ocean gravitational potential energy (GPE) and available gravitational potential energy (AGPE) in the control simulation of the coupled atmosphere–ocean general circulation model HadCM3. Only AGPE can be converted into kinetic energy by adiabatic processes. Diapycnal mixing supplies GPE, but not AGPE, whereas the reverse is true of the combined effect of surface buoyancy forcing and convection. Mixing and buoyancy forcing, thus, play complementary roles in sustaining the large scale circulation. However, the largest globally integrated source of GPE is resolved advection (+0.57 TW) and the largest sink is through parameterized eddy transports (-0.82 TW). The effect of these adiabatic processes on AGPE is identical to their effect on GPE, except for perturbations to both budgets due to numerical leakage exacerbated by non-linearities in the equation of state.
Resumo:
Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.
Resumo:
Quasi-uniform grids of the sphere have become popular recently since they avoid parallel scaling bottle- necks associated with the poles of latitude–longitude grids. However quasi-uniform grids of the sphere are often non- orthogonal. A version of the C-grid for arbitrary non- orthogonal grids is presented which gives some of the mimetic properties of the orthogonal C-grid. Exact energy conservation is sacrificed for improved accuracy and the re- sulting scheme numerically conserves energy and potential enstrophy well. The non-orthogonal nature means that the scheme can be used on a cubed sphere. The advantage of the cubed sphere is that it does not admit the computa- tional modes of the hexagonal or triangular C-grids. On var- ious shallow-water test cases, the non-orthogonal scheme on a cubed sphere has accuracy less than or equal to the orthog- onal scheme on an orthogonal hexagonal icosahedron. A new diamond grid is presented consisting of quasi- uniform quadrilaterals which is more nearly orthogonal than the equal-angle cubed sphere but with otherwise similar properties. It performs better than the cubed sphere in ev- ery way and should be used instead in codes which allow a flexible grid structure.
Energy exchange in a dense urban environment Part II: impact of spatial heterogeneity of the surface
Resumo:
The centre of cities, characterised by spatial and temporal complexity, are challenging environments for micrometeorological research. This paper considers the impact of sensor location and heterogeneity of the urban surface on flux observations in the dense city centre of London, UK. Data gathered at two sites in close vicinity, but with different measurement heights, were analysed to investigate the influence of source area characteristics on long-term radiation and turbulent heat fluxes. Combining consideration of diffuse radiation and effects of specular reflections, the non-Lambertian urban surface is found to impact the measurements of surface albedo. Comparisons of observations from the two sites reveal that turbulent heat fluxes are similar under some flow conditions. However, they mostly observe processes at different scales due to their differing measurement heights, highlighting the critical impact of siting sensors in urban areas. A detailed source area analysis is presented to investigate the surface controls influencing the energy exchanges at the different scales
Resumo:
Systems of two-dimensional hard ellipses of varying aspect ratios and packing fractions are studied by Monte Carlo simulations in the generalised canonical ensemble. From this microscopic model, we extract a coarse-grained macroscopic Landau-de Gennes free energy as a function of packing fraction and orientational order parameter. We separate the free energy into the ideal orientational entropy of non-interacting two-dimensional spins and an excess free energy associated with excluded volume interactions. We further explore the isotropic-nematic phase transition using our empirical expression for the free energy and find that the nature of the phase transition is continuous for the aspect ratios we studied.
Resumo:
Rhythms are manifested ubiquitously in dynamical biological processes. These fundamental processes which are necessary for the survival of living organisms include metabolism, breathing, heart beat, and, above all, the circadian rhythm coupled to the diurnal cycle. Thus, in mathematical biology, biological processes are often represented as linear or nonlinear oscillators. In the framework of nonlinear and dissipative systems (ie. the flow of energy, substances, or sensory information), they generate stable internal oscillations as a response to environmental input and, in turn, utilise such output as a means of coupling with the environment.
Resumo:
Data are presented for a nighttime ion heating event observed by the EISCAT radar on 16 December 1988. In the experiment, the aspect angle between the radar beam and the geomagnetic field was fixed at 54.7°, which avoids any ambiguity in derived ion temperature caused by anisotropy in the ion velocity distribution function. The data were analyzed with an algorithm which takes account of the non-Maxwellian line-of-sight ion velocity distribution. During the heating event, the derived spectral distortion parameter (D∗) indicated that the distribution function was highly distorted from a Maxwellian form when the ion drift increased to 4 km s−1. The true three-dimensional ion temperature was used in the simplified ion balance equation to compute the ion mass during the heating event. The ion composition was found to change from predominantly O4 to mainly molecular ions. A theoretical analysis of the ion composition, using the MSIS86 model and published values of the chemical rate coefficients, accounts for the order-of-magnitude increase in the atomic/molecular ion ratio during the event, but does not successfully explain the very high proportion of molecular ions that was observed.
Resumo:
This paper seeks to elucidate the fundamental differences between the nonconservation of potential temperature and that of Conservative Temperature, in order to better understand the relative merits of each quantity for use as the heat variable in numerical ocean models. The main result is that potential temperature is found to behave similarly to entropy, in the sense that its nonconservation primarily reflects production/destruction by surface heat and freshwater fluxes; in contrast, the nonconservation of Conservative Temperature is found to reflect primarily the overall compressible work of expansion/contraction. This paper then shows how this can be exploited to constrain the nonconservation of potential temperature and entropy from observed surface heat fluxes, and the nonconservation of Conservative Temperature from published estimates of the mechanical energy budgets of ocean numerical models. Finally, the paper shows how to modify the evolution equation for potential temperature so that it is exactly equivalent to using an exactly conservative evolution equation for Conservative Temperature, as was recently recommended by IOC et al. (2010). This result should in principle allow ocean modellers to test the equivalence between the two formulations, and to indirectly investigate to what extent the budget of derived nonconservative quantities such as buoyancy and entropy can be expected to be accurately represented in ocean models.
Resumo:
Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.
Resumo:
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1–40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol–radiation and aerosol–cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land–sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land–sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response.
Resumo:
This paper investigates the price effect of EPC ratings on the residential dwelling prices in Wales. It examines the capitalisation of energy efficiency ratings into house prices using two approaches. The first adopts a cross-sectional framework to investigate the effect of EPC band (and EPC rating) on a large sample of dwelling transactions. The second approach is based on a repeat-sales methodology to examine the impact of EPC band and rating on house price appreciation. The results show that, controlling for other price influencing dwelling characteristics, EPC band does affect house prices. This observed influence of EPC on price may not be a result of energy performance alone; the effect may be due to non-energy related benefits associated with certain types, specifications and ages of dwellings or there may be unobserved quality differences unrelated to energy performance such as better quality fittings and materials. An analysis of the private rental segment reveals that, in contrast to the general market, low-EPC rated properties were not traded at a significant discount, suggesting different implicit prices of potential energy savings for landlords and owner-occupiers.
Resumo:
The feasibility to synthesize, in large quantity, pure and non-toxic tetrahedrite compounds using high-energy mechanical-alloying from only elemental precursors is reported in the present paper for the first time. Our processing technique allows a better control of the final product composition and leads to high thermoelectric performances (ZT of 0.75 at 700 K), comparable to that reported on sealed tube synthesis samples. Combined with spark plasma sintering, the production of highly pure and dense samples is achieved in a very short time, at least 8 times shorter than in conventional liquid-solid-vapor synthesis process. The process described in this paper is a promising way to produce high performance tetrahedrite materials for cost-effective and large-scale thermoelectric applications.
Resumo:
PURPOSE: Consumption of sugar-reformulated products (commercially available foods and beverages that have been reduced in sugar content through reformulation) is a potential strategy for lowering sugar intake at a population level. The impact of sugar-reformulated products on body weight, energy balance (EB) dynamics and cardiovascular disease risk indicators has yet to be established. The REFORMulated foods (REFORM) study examined the impact of an 8-week sugar-reformulated product exchange on body weight, EB dynamics, blood pressure, arterial stiffness, glycemia and lipemia. METHODS: A randomized, controlled, double-blind, crossover dietary intervention study was performed with fifty healthy normal to overweight men and women (age 32.0 ± 9.8 year, BMI 23.5 ± 3.0 kg/m2) who were randomly assigned to consume either regular sugar or sugar-reduced foods and beverages for 8 weeks, separated by 4-week washout period. Body weight, energy intake (EI), energy expenditure and vascular markers were assessed at baseline and after both interventions. RESULTS: We found that carbohydrate (P < 0.001), total sugars (P < 0.001) and non-milk extrinsic sugars (P < 0.001) (% EI) were lower, whereas fat (P = 0.001) and protein (P = 0.038) intakes (% EI) were higher on the sugar-reduced than the regular diet. No effects on body weight, blood pressure, arterial stiffness, fasting glycemia or lipemia were observed. CONCLUSIONS: Consumption of sugar-reduced products, as part of a blinded dietary exchange for an 8-week period, resulted in a significant reduction in sugar intake. Body weight did not change significantly, which we propose was due to energy compensation.
Resumo:
A body of research suggests that the provision of energy feedback information to building users can elicit significant energy reductions through behaviour change. However, most studies have focused on energy use in homes and the assessment of interventions and technologies, to the neglect of the non-domestic context and broader issues arising from the introduction of feedback technologies. To address this gap, a non-domestic case study explores the delivery of personalized energy feedback to office workers through a novel system utilizing wireless technologies. The research demonstrates advantages of monitoring occupancy and quantifying energy use from specific behaviours as a basis for effective energy feedback; this is particularly important where there are highly disaggregated forms of energy use and a range of locations for that activity to take place. Quantitative and qualitative data show that personalized feedback can help individuals identify energy reduction opportunities. However, the analysis also highlights important contextual barriers and issues that need to be addressed when utilizing feedback technologies in the workplace. If neglected, these issues may limit the effective take-up of feedback interventions.
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated at two locations in the UK: a dense urban site in the centre of London and a residential suburban site in Swindon. Eddy covariance observations of the turbulent fluxes are used to assess model performance over a twoyear period (2011-2013). The distinct characteristics of the sites mean their surface energy exchanges differ considerably. The model suggests the largest differences can be attributed to surface cover (notably the proportion of vegetated versus impervious area) and the additional energy supplied by human activities. SUEWS performs better in summer than winter, and better at the suburban site than the dense urban site. One reason for this is the bias towards suburban summer field campaigns in observational data used to parameterise this (and other) model(s). The suitability of model parameters (such as albedo, energy use and water use) for the UK sites is considered and, where appropriate, alternative values are suggested. An alternative parameterisation for the surface conductance is implemented, which permits greater soil moisture deficits before evaporation is restricted at non-irrigated sites. Accounting for seasonal variation in the estimation of storage heat flux is necessary to obtain realistic wintertime fluxes.