107 resultados para near null magnetic field
Resumo:
We analyze ionospheric convection patterns over the polar regions during the passage of an interplanetary magnetic cloud on January 14, 1988, when the interplanetary magnetic field (IMF) rotated slowly in direction and had a large amplitude. Using the assimilative mapping of ionospheric electrodynamics (AMIE) procedure, we combine simultaneous observations of ionospheric drifts and magnetic perturbations from many different instruments into consistent patterns of high-latitude electrodynamics, focusing on the period of northward IMF. By combining satellite data with ground-based observations, we have generated one of the most comprehensive data sets yet assembled and used it to produce convection maps for both hemispheres. We present evidence that a lobe convection cell was embedded within normal merging convection during a period when the IMF By and Bz components were large and positive. As the IMF became predominantly northward, a strong reversed convection pattern (afternoon-to-morning potential drop of around 100 kV) appeared in the southern (summer) polar cap, while convection in the northern (winter) hemisphere became weak and disordered with a dawn-to-dusk potential drop of the order of 30 kV. These patterns persisted for about 3 hours, until the IMF rotated significantly toward the west. We interpret this behavior in terms of a recently proposed merging model for northward IMF under solstice conditions, for which lobe field lines from the hemisphere tilted toward the Sun (summer hemisphere) drape over the dayside magnetosphere, producing reverse convection in the summer hemisphere and impeding direct contact between the solar wind and field lines connected to the winter polar cap. The positive IMF Bx component present at this time could have contributed to the observed hemispheric asymmetry. Reverse convection in the summer hemisphere broke down rapidly after the ratio |By/Bz| exceeded unity, while convection in the winter hemisphere strengthened. A dominant dawn-to-dusk potential drop was established in both hemispheres when the magnitude of By exceeded that of Bz, with potential drops of the order of 100 kV, even while Bz remained northward. The later transition to southward Bz produced a gradual intensification of the convection, but a greater qualitative change occurred at the transition through |By/Bz| = 1 than at the transition through Bz = 0. The various convection patterns we derive under northward IMF conditions illustrate all possibilities previously discussed in the literature: nearly single-cell and multicell, distorted and symmetric, ordered and unordered, and sunward and antisunward.
Resumo:
Ground magnetic field perturbations recorded by the CANOPUS magnetometer network in the 7 to 13 MLT sector are used to examine how reconfigurations of the dayside polar ionospheric flow take place in response to north-south changes of the IMF. During the 6-hour interval in question IMF Bz oscillates between ±7 nT with about a 1-hour period. Corresponding variations in the ground magnetic disturbance are observed which we infer are due to changes in ionospheric flow. Cross correlation of the data obtained from two ground stations at 73.5° magnetic latitude, but separated by ∼2 hours in MLT, shows that changes in the flow are initiated in the prenoon sector (∼10 MLT) and then spread outward toward dawn and dusk with a phase speed of ∼5 km s−1 over the longitude range ∼8 to 12 MLT, slowing to ∼2 km s−1 outside this range. Cross correlating the data from these ground stations with IMP 8 IMF Bz records produces a MLT variation in the ground response delay relative to the IMF which is compatible with these deduced phase speeds. We interpret these observations in terms of the ionospheric response to the onset, expansion and decay of magnetic reconnection at the dayside magnetopause.
Resumo:
The asymmetries in the convective flows, current systems, and particle precipitation in the high-latitude dayside ionosphere which are related to the equatorial plane components of the interplanetary magnetic field (IMF) are discussed in relation to the results of several recent observational studies. It is argued that all of the effects reported to date which are ascribed to the y component of the IMF can be understood, at least qualitatively, in terms of a simple theoretical picture in which the effects result from the stresses exerted on the magnetosphere consequent on the interconnection of terrestrial and interplanetary fields. In particular, relaxation under the action of these stresses allows, in effect, a partial penetration of the IMF into the magnetospheric cavity, such that the sense of the expected asymmetry effects on closed field lines can be understood, to zeroth order, in terms of the “dipole plus uniform field” model. In particular, in response to IMF By, the dayside cusp should be displaced in longitude about noon in the same sense as By in the northern hemisphere, and in the opposite sense to By in the southern hemisphere, while simultaneously the auroral oval as a whole should be shifted in the dawn-dusk direction in the opposite sense with respect to By. These expected displacements are found to be consistent with recently published observations. Similar considerations lead to the suggestion that the auroral oval may also undergo displacements in the noon-midnight direction which are associated with the x component of the IMF. We show that a previously published study of the position of the auroral oval contains strong initial evidence for the existence of this effect. However, recent results on variations in the latitude of the cusp are more ambiguous. This topic therefore requires further study before definitive conclusions can be drawn.
Resumo:
The variability of hourly values of solar wind number density, number density variation, speed, speed variation and dynamic pressure with IMF Bz and magnitude |B| has been examined for the period 1965–1986. We wish to draw attention to a strong correlation in number density and number density fluctuation with IMF Bz characterised by a symmetric increasing trend in these quantities away from Bz = 0 nT. The fluctuation level in solar wind speed is found to be relatively independent of Bz. We infer that number density and number density variability dominate in controlling solar wind dynamic pressure and dynamic pressure variability. It is also found that dynamic pressure is correlated with each component of IMF and that there is evidence of morphological differences between the variation with each component. Finally, we examine the variation of number density, speed, dynamic pressure and fluctuation level in number density and speed with IMF magnitude |B|. Again we find that number density variation dominates over solar wind speed in controlling dynamic pressure.
Resumo:
The orientation of the Interplanetary Magnetic Field (IMF) during transient bursts of ionospheric flow and auroral activity in the dayside auroral ionosphere is studied, using data from the EISCAT radar, meridian-scanning photometers, and an all-sky TV camera, in conjunction with simultaneous observations of the interplanetary medium by the IMP-8 satellite. It is found that the ionospheric flow and auroral burst events occur regularly (mean repetition period equal to 8.3 ± 0.6 min) during an initial period of about 45 min when the IMF is continuously and strongly southward in GSM coordinates, consistent with previous observations of the occurrence of transient dayside auroral activity. However, in the subsequent 1.5 h, the IMF was predominantly northward, and only made brief excursions to a southward orientation. During this period, the mean interval between events increased to 19.2 ± 1.7 min. If it is assumed that changes in the North-South component of the IMF are aligned with the IMF vector in the ecliptic plane, the delays can be estimated between such a change impinging upon IMP-8 and the response in the cleft ionosphere within the radar field-of-view. It is found that, to within the accuracy of this computed lag, each transient ionospheric event during the period of predominantly northward IMF can be associated with a brief, isolated southward excursion of the IMF, as observed by IMP-8. From this limited period of data, we therefore suggest that transient momentum exchange between the magnetosheath and the ionosphere occurs quasi-periodically when the IMF is continuously southward, with a mean period which is strikingly similar to that for Flux Transfer Events (FTEs) at the magnetopause. During periods of otherwise northward IMF, individual momentum transfer events can be triggered by brief swings to southward IMF. Hence under the latter conditions the periodicity of the events can reflect a periodicity in the IMF, but that period will always be larger than the minimum value which occurs when the IMF is strongly and continuously southward.
Resumo:
In the auroral zone, ionospheric plasma often moves horizontally at more than 1 km s−1, driven by magnetospheric electric fields, but it has usually been assumed that vertical velocities are much smaller. On occasions, however, plasma has been seen to move upwards along the magnetic field line at several hundred m s−1. These upward velocities are associated with electric fields strong enough to heat the ion population and drive it into a non-thermal state1,2. Here we report observations of substantial upwards acceleration of plasma, to velocities as high as 500 m s−1. An initial upthrust was provided by a combined upwelling of the neutral atmosphere and ionosphere but the continued acceleration at greater heights is explained by a combination of enhanced plasma pressure and the 'hydrodynamic mirror force'3. This acceleration marks an important stage in the transport of plasma from the ionosphere into the magnetosphere.
Resumo:
This paper surveys the results of simultaneous observations by the EISCAT incoherent scatter radar and the AMPTE-UKS satellite, made during three periods in September and October 1984, when AMPTE-UKS was in the solar wind on the dayside of the Earth and the UK-POLAR EISCAT experiment was measuring ionospheric parameters at invariant latitudes 70.8–75.0°. A total of 42 h of EISCAT convection velocity data, with 2.5 min resolution, were obtained, together with 28 h of simultaneous 5 s resolution AMPTE-UKS observations of the solar wind and interplanetary magnetic field (IMF). The general features of the AMPTE-UKS data are described in Section 2 and those of the EISCAT data are described in Sections 3 and 4. The main subjects discussed are the form of the plasma convection patterns and their dependence on all three components of the IMF (Section 5), the ionospheric response to abrupt changes in the IMF (Section 6), in particular a sharp ‘southward turning’ of the IMF on 27 October 1984, and a crossing of an IMF sector boundary. Section 7 describes ‘short lived rapid flow burst’, which are believed to be related to flux transfer events at the magnetopause.
Resumo:
On October 27th 1984, high-latitude ionospheric convection was observed by the European incoherent scatter (EISCAT) radar. For a nine-hour period, simultaneous observations of the interplanetary magnetic field (IMF) were obtained sunward of the Earth's bow shock. During this period, the IMF abruptly turned southward, having previously been predominantly northward for approximately three hours, and a strong enhancement in convection was observed 11 ± 1 minutes later. Using the very high time resolution of the EISCAT data, it is shown that the convection enhancement propagated eastward, around the afternoon magnetic local time sector, at a speed of the order of 1 kms−1. These results are interpreted in terms of the effects of an onset of steady IMF-geomagnetic field merging and are the first to show how a new pattern of enhanced convection is established in the high latitude ionosphere.
Resumo:
Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms(THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward, while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about 3 h.
Resumo:
Empirical Mode Decomposition is presented as an alternative to traditional analysis methods to decompose geomagnetic time series into spectral components. Important comments on the algorithm and its variations will be given. Using this technique, planetary wave modes of 5-, 10-, and 16-day mean periods can be extracted from magnetic field components of three different stations in Germany. In a second step, the amplitude modulation functions of these wave modes can be shown to contain significant contribution from solar cycle variation through correlation with smoothed sunspot numbers. Additionally, the data indicate connections with geomagnetic jerk occurrences, supported by a second set of data providing reconstructed near-Earth magnetic field for 150 years. Usually attributed to internal dynamo processes within the Earth's outer core, the question of who is impacting whom will be briefly discussed here.
Resumo:
Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.
Resumo:
The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.
Resumo:
The Sun's open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near-Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle-to-cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.
Resumo:
Despite the characterization of the auroral substorm more than 40 years ago, controversy still surrounds the processes triggering substorm onset initiation. That stretching of the Earth's magnetotail following the addition of new nightside magnetic flux from dayside reconnection powers the substorm is well understood; the trigger for explosive energy release at substorm expansion phase onset is not. Using ground-based data sets with unprecedented combined spatial and temporal coverage, we report the discovery of new localized and contemporaneous magnetic wave and small azimuthal scale auroral signature of substorm onset. These local auroral arc undulations and magnetic field signatures rapidly evolve on second time scales for several minutes in advance of the release of the auroral surge. We also present evidence from a conjugate geosynchronous satellite of the concurrent magnetic onset in space as the onset of magnetic pulsations in the ionosphere, to within technique error. Throughout this time period, the more poleward arcs that correspond to the auroral oval which maps to the central plasma sheet remain undisturbed. There is good evidence that flows from the midtail crossing the plasma sheet can generate north-south auroral structures, yet no such auroral forms are seen in this event. Our observations present a severe challenge to the standard hypothesis that magnetic reconnection in stretched magnetotail fields triggers onset, indicating substorm expansion phase initiation occurs on field lines that are close to the Earth, as bounded by observations at geosynchronous orbit and in the conjugate ionosphere.
Resumo:
Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.