35 resultados para metal ion sensor
Resumo:
The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.
Resumo:
The rigid [6]ferrocenophane, L-1, was synthesised by condensation of 1,1'-ferrocene dicarbaldehyde with trans-1,2-diaminocyclohexane in high dilution at r.t. followed by reduction. When other experimental conditions were employed, the [6,6,6]ferrocenephane (L-2) was also obtained. Both compounds were characterised by single crystal X-ray crystallography. The protonation of L-1 and its metal complexation were evaluated by the effect on the electron-transfer process of the ferrocene (fc) unit of L-1 using cyclic voltammetry (CV) and square wave voltammetry (SWV) in anhydrous CH3CN solution and in 0.1 M (Bu4NPF6)-Bu-n as the supporting electrolyte. The electrochemical process of L-1 between 300 and 900 mV is complicated by amine oxidation. On the other hand, an anodic shift from the fc/fc(+) wave of L-1 of 249, 225, 81 and 61 mV was observed by formation of Zn2+, Ni2+, Pd2+ and Cu2+ complexes, respectively. Whereas Mg2+ and Ca2+ only have with L-1 weak interactions and they promote the acid-base equilibrium of L-1. This reveals that L-1 is an interesting molecular redox sensor for detection of Zn2+ and Ni2+, although the kinetics of the Zn2+ complex formation is much faster than that of the Ni2+ one. The X-ray crystal structure of [(PdLCl2)-Cl-1] was determined and showed a square-planar environment with Pd(II) and Fe(II) centres separated by 3.781(1) angstrom. The experimental anodic shifts were elucidated by DFT calculations on the [(MLCl2)-Cl-1] series and they are related to the nature of the HOMO of these complexes and a four-electron, two-orbital interaction.
Resumo:
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin- 3-yl)-2,2′ : 6′,2′′-terpyridine (CyMe4-hemi-BTBP) has been synthesized and its interactions with Am(III),U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UVabsorption spectrophotometry, NMR studies and ESI-MS. Structures of 1 : 1 complexes with Eu(III), Ce(III) and the linear uranyl (UO2 2+) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III)complex is higher. 1H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1 : 1 complexes with Eu(III), Ce(III) and Yb(III), while both 1 : 1 and 1 : 2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2 : 2 helical complexes was formed with Cu(I), with a slight preference (1.4 : 1) for a single directional isomer. In contrast, a 1 : 1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III)from Ln(III) by quadridentate N-donor ligands.
Resumo:
Carbon monoxide is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, nitric oxide and cGMP levels, as well as regulate MAP kinase signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca2+ -sensitive K+ channels. More recent studies have revealed the ability of CO to inhibit T-type Ca2+ channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.
Resumo:
Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, NO and cGMP levels, as well as regulate MAPK signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca2+ -sensitive K+ channels. More recent studies have revealed the ability of CO to inhibit T-type Ca2+ channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.