56 resultados para mathematical methods in social sciences
Resumo:
The use of business management techniques in the public sector is not a new topic. However the increased use of the phrase "housing business management" as against that of "housing administration" reflects a change in the underlying philosophy of service delivery. The paper examines how data collection and use can be related to the operational requirements of the social landlords and highlights the problems of systems dynamics generating functionally obsolete data.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Resumo:
We consider the time-harmonic Maxwell equations with constant coefficients in a bounded, uniformly star-shaped polyhedron. We prove wavenumber-explicit norm bounds for weak solutions. This result is pivotal for convergence proofs in numerical analysis and may be a tool in the analysis of electromagnetic boundary integral operators.
Resumo:
In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.
Resumo:
Relating system dynamics to the broad systems movement, the key notion is that reinforcing loops deserve no less attention than balancing loops. Three specific propositions follow. First, since reinforcing loops arise in surprising places, investigations of complex systems must consider their possible existence and potential impact. Second, because the strength of reinforcing loops can be misinferred - we include an example from the field of servomechanisms - computer simulation can be essential. Be it project management, corporate growth or inventory oscillation, simulation helps to assess consequences of reinforcing loops and options for interventions. Third, in social systems the consequences of reinforcing loops are not inevitable. Examples concerning globalization illustrate how difficult it might be to challenge such assumptions. However, system dynamics and ideas from contemporary social theory help to show that even the most complex social systems are, in principle, subject to human influence. In conclusion, by employing these ideas, by attending to reinforcing as well as balancing loops, system dynamics work can improve the understanding of social systems and illuminate our choices when attempting to steer them.
Resumo:
Purpose – The purpose of the research was to discover the process of social and environmental report assurance (SERA) and thereby evaluate the benefits, extent of stakeholder inclusivity and/or managerial capture of SERA processes and the dynamics of SERA as it matures. Design/methodology/approach – This paper used semi-structured interviews with 20 accountant and consultant assurors to derive data, which were then coded and analysed, resulting in the identification of four themes. Findings – This paper provides interview evidence on the process of SERA, suggesting that, although there is still managerial capture of SERA, stakeholders are being increasingly included in the process as it matures. SERA is beginning to provide dual-pronged benefits, adding value to management and stakeholders simultaneously. Through the lens of Freirian dialogic theory, it is found that SERA is starting to display some characteristics of a dialogical process, being stakeholder inclusive, demythologising and transformative, with assurors perceiving themselves as a “voice” for stakeholders. Consequently, SERA is becoming an important mechanism for driving forward more stakeholder-inclusive SER, with the SERA process beginning to transform attitudes of management towards their stakeholders through more stakeholder-led SER. However, there remain significant obstacles to dialogic SERA. The paper suggests these could be removed through educative and transformative processes driven by assurors. Originality/value – Previous work on SERA has involved predominantly content-based analysis on assurance statements. However, this paper investigates the details of the SERA process, for the first time using qualitative interview data.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
This article provides a critical examination of the way that property rules are applied judicially in the context of social security law concerned with the assessment of capital, and especially in connection with the determination of ownership and the valuation of assets, which can have a critical bearing on entitlement to various means-tested benefits.
Resumo:
In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.
Resumo:
The use of online data is becoming increasingly essential for the generation of insight in today’s research environment. This reflects the much wider range of data available online and the key role that social media now plays in interpersonal communication. However, the process of gaining permission to use social media data for research purposes creates a number of significant issues when considering compatibility with professional ethics guidelines. This paper critically explores the application of existing informed consent policies to social media research and compares with the form of consent gained by the social networks themselves, which we label ‘uninformed consent’. We argue that, as currently constructed, informed consent carries assumptions about the nature of privacy that are not consistent with the way that consumers behave in an online environment. On the other hand, uninformed consent relies on asymmetric relationships that are unlikely to succeed in an environment based on co-creation of value. The paper highlights the ethical ambiguity created by current approaches for gaining customer consent, and proposes a new conceptual framework based on participative consent that allows for greater alignment between consumer privacy and ethical concerns.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.