45 resultados para liquid crystal displays (LCDs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry of nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce a platinum modified electrode with a relatively high surface area (Roughness factor, Rf = 42.4). The electroreduction of molecular oxygen at a nanostructured platinum surface is used to demonstrate the ability of HMV to discriminate between Faradaic and non-Faradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen shows considerable hysteresis correlating with the formation and stripping of oxide species at the platinum surface. Without the HMV analysis it is difficult to discern the same detail under the conditions employed. In addition the detection limit of the apparatus is explored and shown, under ideal conditions, to be of the order of 45 nmol dm(-3) employing [Fe(CN)(6)](4-) as a test species. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished and conventional platinized microelectrodes, well-ordered nanostructured platinum microelectrodes exhibited enhanced electrocatalytic properties for oxygen and ascorbic acid, whilst well-ordered nanostructured platinum microelectrodes offered improved electrocatalytic properties for oxygen reduction compared to disordered nanostructured platinum microelectrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the technique of liquid crystal templating a series of high surface area mesoporous platinum microelectrodes was fabricated. The underpotential deposition of metal ions at such electrodes was found to be similar to that at conventional platinum electrodes. The phenomena of underpotential deposition, in combination with the intrinsic properties of mesoporous microelectrodes (i.e. a high surface area and efficient mass transport) was exploited for the purpose of anodic stripping voltammetry. In particular the underpotential deposition of Ag+, Pb2+ and Cu2+ ions was investigated and it was found that mesoporous microelectrodes were able to quantify the concentration of ions in solution down to the ppb range. The overall behaviour of the mesoporous electrodes was found to be superior to that of conventional microelectrodes and the effects of interference by surfactants were minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry of Pt nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce platinum-modified electrodes with a range of surface areas (roughness factor 42.4-280.8). The electroreduction of molecular oxygen at these nanostructured platinum surfaces is used to demonstrate the ability of HMV to discriminate between faradaic and nonfaradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen experiences considerable signal loss within the high pseudocapacitive region of the voltammetry. Evidence for the contribution of the double layer to transient mass transfer events is presented. In addition, a model circuit and appropriate theoretical analysis are used to illustrate the transient responses of a time variant faradaic component. This in conjunction with the experimental evidence shows that, far from being a passive component in this system, the double layer can contribute to HMV faradaic reactions under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, YYKLVFF, has been studied in aqueous solution. Two PEG molar masses, PEG1k and PEG3k, were used in the conjugates. It is shown that both YYKLVFF–PEG hybrids form fibrils comprising a peptide core and a PEG corona. The fibrils are much longer for YYKLVFF–PEG1k, pointing to an influence of PEG chain length. The beta-sheet secondary structure of the peptide is retained in the conjugate. Lyotropic liquid crystal phases, specifically nematic and hexagonal columnar phases, are formed at sufficiently high concentration. Flow alignment of these mesophases was investigated by small-angle neutron scattering with in situ steady shearing in a Couette cell. On drying, PEG crystallization occurs leading to characteristic peaks in the X-ray diffraction pattern, and to lamellar structures imaged by atomic force microscopy. The X-ray diffraction pattern retains features of the cross-beta pattern from the beta-sheet structure, showing that this is not disrupted by PEG crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, FEK LVFF, has been studied in aqueous solution. PEG molar masses PEG1k, PEG2k, and PEG10k were used in the conjugates. It is shown that the three FFK LVFF-PEG hybrids form fibrils comprising a FFKLVFF core and a PEG corona. The beta-sheet secondary structure of the peptide is retained in the FFK LVFF fibril core. At sufficiently high concentrations, FEK LVFF-PEG1k and FEK LVFF-PEG2k form a nema tic phase, while PEG10k-FEK LVFF exhibits a hexagonal columnar phase. Simultaneous small angle neutron scattering/shear flow experiments were performed to study the shear flow alignment of the nematic and hexagonal liquid crystal phases. On drying, PEG crystallization occurs without disruption of the FFK LVFF beta-sheet structure leading to characteristic peaks in the X-ray diffraction pattern and FTIR spectra. The stability of beta-sheet structures was also studied in blends of FFKLVFF-PEG conjugates with poly(acrylic acid) (PAA). While PEG crystallization is only observed up to 25% PAA content in the blends, the FFK LVFF beta-sheet structure is retained up to 75% PAA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical expressions for the meridional scattering from highly oriented random copolyesters are presented. These procedures are utilised in developing the relationship of the features in the diffraction pattern to compositions and relative lengths of the constituent monomer units. The difference between the scattering patterns for random and block copolymers are discussed. The theory is applied to an example of a liquid crystal froming random copolyester.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (QII D) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L3 phase) in the presence of butanediol, we can obtain a film of the QII D phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that found in the oriented bulk material that we have reported previously; therefore, we can now reproducibly form QII D samples oriented with either the [110] or the [100] axis aligned in the flow direction depending on the method of preparation. The deposition of MO as a film, via a moving fluid− air interface that leaves a coating of MO in the L3 phase on the capillary wall, leads to a sample in the [110] orientation. This contrasts with the bulk material that we have previously demonstrated to be oriented in the [100] direction, arising from flow producing an oriented bulk slug of material within the capillary tube. The bulk sample contains significant amounts of residual butanediol, which can be estimated from the lattice parameter of the QII D phase obtained. The sample orientation and lattice parameters are determined from synchrotron small-angle X-ray scattering patterns and confirmed by simulations. This has potential applications in the production of template materials and the growth of protein crystals for crystallography as well as deepening our understanding of the mechanisms underlying the behavior of lyotropic liquid-crystal phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using bis(3,5-dimethylpyrazol-1-yl) methane as the bidentate N donor ligand L, the yellow compound trans-[(RuL2)-L-III(OMe)(2)]ClO4 center dot CH2Cl2 is synthesized. It is a rare example of a mononuclear dialkoxo complex of Ru(III). It shows a quasireversible Ru(II/III) couple at -0.65 V versus NHE in acetonitrile at a Pt electrode. Its magnetic moment at room temperature corresponds to one unpaired electron. It displays a rhombic EPR spectrum in acetone at 77 K with g = 2.219, 2.062 and 1.855. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chemically coated piezoelectric sensor has been developed for the determination of PAHs in the liquid phase. An organic monolayer attached to the surface of a gold electrode of a quartz crystal microbalance (QCM) via a covalent thiol-gold link complete with an ionically bound recognition element has been produced. This study has employed the PAH derivative 9-anthracene carboxylic acid which, once bound to the alkane thiol, functions as the recognition element. Binding of anthracene via pi-pi interaction has been observed as a frequency shift in the QCM with a detectability of the target analyte of 2 ppb and a response range of 0-50 ppb. The relative response of the sensor altered for different PAHs despite pi-pi interaction being the sole communication between recognition element and analyte. It is envisaged that such a sensor could be employed in the identification of key marker compounds and, as such, give an indication of total PAH flux in the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.