154 resultados para linear-in-the-parameters model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model's generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic “bridge” between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of dust aerosol in the Earth system, state-of-the-art models show a large variety for North African dust emission. This study presents a systematic evaluation of dust emitting-winds in 30 years of the historical model simulation with the UK Met Office Earth-system model HadGEM2-ES for the Coupled Model Intercomparison Project Phase 5. Isolating the effect of winds on dust emission and using an automated detection for nocturnal low-level jets (NLLJs) allow an in-depth evaluation of the model performance for dust emission from a meteorological perspective. The findings highlight that NLLJs are a key driver for dust emission in HadGEM2-ES in terms of occurrence frequency and strength. The annually and spatially averaged occurrence frequency of NLLJs is similar in HadGEM2-ES and ERA-Interim from the European Centre for Medium-Range Weather Forecasts. Compared to ERA-Interim, a stronger pressure ridge over northern Africa in winter and the southward displaced heat low in summer result in differences in location and strength of NLLJs. Particularly the larger geostrophic winds associated with the stronger ridge have a strengthening effect on NLLJs over parts of West Africa in winter. Stronger NLLJs in summer may rather result from an artificially increased mixing coefficient under stable stratification that is weaker in HadGEM2-ES. NLLJs in the Bodélé Depression are affected by stronger synoptic-scale pressure gradients in HadGEM2-ES. Wintertime geostrophic winds can even be so strong that the associated vertical wind shear prevents the formation of NLLJs. These results call for further model improvements in the synoptic-scale dynamics and the physical parametrization of the nocturnal stable boundary layer to better represent dust-emitting processes in the atmospheric model. The new approach could be used for identifying systematic behavior in other models with respect to meteorological processes for dust emission. This would help to improve dust emission simulations and contribute to decreasing the currently large uncertainty in climate change projections with respect to dust aerosol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing numerical characterizations of the optimal income tax have been based on a limited number of model specifications. As a result, they do not reveal which properties are general. We determine the optimal tax in the quasi-linear model under weaker assumptions than have previously been used; in particular, we remove the assumption of a lower bound on the utility of zero consumption and the need to permit negative labor incomes. A Monte Carlo analysis is then conducted in which economies are selected at random and the optimal tax function constructed. The results show that in a significant proportion of economies the marginal tax rate rises at low skills and falls at high. The average tax rate is equally likely to rise or fall with skill at low skill levels, rises in the majority of cases in the centre of the skill range, and falls at high skills. These results are consistent across all the specifications we test. We then extend the analysis to show that these results also hold for Cobb-Douglas utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of the ensemble Kalman filter (EnKF) is examined in the context of a model that exhibits a nonlinear chaotic (slow) vortical mode coupled to a linear (fast) gravity wave of a given amplitude and frequency. It is shown that accurate recovery of both modes is enhanced when covariances between fast and slow normal-mode variables (which reflect the slaving relations inherent in balanced dynamics) are modeled correctly. More ensemble members are needed to recover the fast, linear gravity wave than the slow, vortical motion. Although the EnKF tends to diverge in the analysis of the gravity wave, the filter divergence is stable and does not lead to a great loss of accuracy. Consequently, provided the ensemble is large enough and observations are made that reflect both time scales, the EnKF is able to recover both time scales more accurately than optimal interpolation (OI), which uses a static error covariance matrix. For OI it is also found to be problematic to observe the state at a frequency that is a subharmonic of the gravity wave frequency, a problem that is in part overcome by the EnKF.However, error in themodeled gravity wave parameters can be detrimental to the performance of the EnKF and remove its implied advantages, suggesting that a modified algorithm or a method for accounting for model error is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.