36 resultados para least authorization
Resumo:
In this paper a modified algorithm is suggested for developing polynomial neural network (PNN) models. Optimal partial description (PD) modeling is introduced at each layer of the PNN expansion, a task accomplished using the orthogonal least squares (OLS) method. Based on the initial PD models determined by the polynomial order and the number of PD inputs, OLS selects the most significant regressor terms reducing the output error variance. The method produces PNN models exhibiting a high level of accuracy and superior generalization capabilities. Additionally, parsimonious models are obtained comprising a considerably smaller number of parameters compared to the ones generated by means of the conventional PNN algorithm. Three benchmark examples are elaborated, including modeling of the gas furnace process as well as the iris and wine classification problems. Extensive simulation results and comparison with other methods in the literature, demonstrate the effectiveness of the suggested modeling approach.
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein-Friesian cattle was collected across the year and blended (n=55), to maximize variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variable for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
The l1-norm sparsity constraint is a widely used technique for constructing sparse models. In this contribution, two zero-attracting recursive least squares algorithms, referred to as ZA-RLS-I and ZA-RLS-II, are derived by employing the l1-norm of parameter vector constraint to facilitate the model sparsity. In order to achieve a closed-form solution, the l1-norm of the parameter vector is approximated by an adaptively weighted l2-norm, in which the weighting factors are set as the inversion of the associated l1-norm of parameter estimates that are readily available in the adaptive learning environment. ZA-RLS-II is computationally more efficient than ZA-RLS-I by exploiting the known results from linear algebra as well as the sparsity of the system. The proposed algorithms are proven to converge, and adaptive sparse channel estimation is used to demonstrate the effectiveness of the proposed approach.
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.