87 resultados para large scale linear system
Resumo:
The EU-funded research project ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative human impacts. Research focuses on the assessment and forecast of changes in biodiversity and in the structure, function, and dynamics of ecosystems. This includes the relationships between society, the economy and biodiversity.
Resumo:
Background: The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 similar to 15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A(2A)R) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results: Bioreactor cultures yielded an approximately five times increase in cell density (OD600 similar to 75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A(2A)R, and therefore more suitable for further functional and structural studies. Conclusion: Large-scale expression of the A(2A)R in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.
Resumo:
Large scientific applications are usually developed, tested and used by a group of geographically dispersed scientists. The problems associated with the remote development and data sharing could be tackled by using collaborative working environments. There are various tools and software to create collaborative working environments. Some software frameworks, currently available, use these tools and software to enable remote job submission and file transfer on top of existing grid infrastructures. However, for many large scientific applications, further efforts need to be put to prepare a framework which offers application-centric facilities. Unified Air Pollution Model (UNI-DEM), developed by Danish Environmental Research Institute, is an example of a large scientific application which is in a continuous development and experimenting process by different institutes in Europe. This paper intends to design a collaborative distributed computing environment for UNI-DEM in particular but the framework proposed may also fit to many large scientific applications as well.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Evidence is presented of widespread changes in structure and species composition between the 1980s and 2003–2004 from surveys of 249 British broadleaved woodlands. Structural components examined include canopy cover, vertical vegetation profiles, field-layer cover and deadwood abundance. Woods were located in 13 geographical localities and the patterns of change were examined for each locality as well as across all woods. Changes were not uniform throughout the localities; overall, there were significant decreases in canopy cover and increases in sub-canopy (2–10 m) cover. Changes in 0.5–2 m vegetation cover showed strong geographic patterns, increasing in western localities, but declining or showing no change in eastern localities. There were significant increases in canopy ash Fraxinus excelsior and decreases in oak Quercus robur/petraea. Shrub layer ash and honeysuckle Lonicera periclymenum increased while birch Betula spp. hawthorn Crataegus monogyna and hazel Corylus avellana declined. Within the field layer, both bracken Pteridium aquilinum and herbs increased. Overall, deadwood generally increased. Changes were consistent with reductions in active woodland management and changes in grazing and browsing pressure. These findings have important implications for sustainable active management of British broadleaved woodlands to meet silvicultural and biodiversity objectives.
Resumo:
Interwar British retailing has been characterized as having lower productivity, less developed managerial hierarchies and methods, and weaker scale economies than its US counterpart. This article examines comparative productivity for one major segment of large-scale retailing in both countries—the department store sector. Drawing on exceptionally detailed contemporary survey data, we show that British department stores in fact achieved superior performance in terms of operating costs, margins, profits, and stock-turn. While smaller British stores had lower labour productivity than US stores of equivalent size, TFP was generally higher for British stores, which also enjoyed stronger scale economies. We also examine the reasons behind Britain's surprisingly strong relative performance, using surviving original returns from the British surveys. Contrary to arguments that British retailers faced major barriers to the development of large-scale enterprises, that could reap economies of scale and scope and invest in machinery and marketing to support the growth of their primary sales functions, we find that British department stores enthusiastically embraced the retail ‘managerial revolution’—and reaped substantial benefits from this investment.
Resumo:
Over recent years there has been an increasing deployment of renewable energy generation technologies, particularly large-scale wind farms. As wind farm deployment increases, it is vital to gain a good understanding of how the energy produced is affected by climate variations, over a wide range of time-scales, from short (hours to weeks) to long (months to decades) periods. By relating wind speed at specific sites in the UK to a large-scale climate pattern (the North Atlantic Oscillation or "NAO"), the power generated by a modelled wind turbine under three different NAO states is calculated. It was found that the wind conditions under these NAO states may yield a difference in the mean wind power output of up to 10%. A simple model is used to demonstrate that forecasts of future NAO states can potentially be used to improve month-ahead statistical forecasts of monthly-mean wind power generation. The results confirm that the NAO has a significant impact on the hourly-, daily- and monthly-mean power output distributions from the turbine with important implications for (a) the use of meteorological data (e.g. their relationship to large scale climate patterns) in wind farm site assessment and, (b) the utilisation of seasonal-to-decadal climate forecasts to estimate future wind farm power output. This suggests that further research into the links between large-scale climate variability and wind power generation is both necessary and valuable.