71 resultados para lactose feeding
Resumo:
Diet therapy utilizing probiotics and prebiotics may help treat many common gastrointestinal complaints. From birth to about 2 years of age the human digestive tract changes from sterile to a complex ecosystem with at least 500 bacterial species, most of these are benign and even necessary, however, pathogenic species also colonize the digestive tract. The idea is that prebiotics and probiotics can be used to displace and neutralise these pathogens.
Resumo:
A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.
Classification of lactose and mandelic acid THz spectra using subspace and wavelet-packet algorithms
Resumo:
This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.
Resumo:
Replicate lines of Drosophila melanogaster have been selected for increased resistance against one of two species of parasitoid wasp, Asobara tabida and Leptopilina boulardi. In both cases, it has been shown that an improved ability to mount an immunological defense against the parasitoid's egg is associated with reduced survival when the larvae are reared under conditions of low resource availability and thus high competition. We show here that in both sets of selected lines, lower competitive ability is associated with reduced rates of larval feeding, as measured by the frequency of retractions of the cephalopharyngeal skeleton. This suggests that the same or similar physiological processes are involved in the trade-off between competition and resistance against either parasitoid and shows how the interaction between adaptations for competition and natural enemy resistance may be mediated.
Resumo:
A cause and effect relationship between glucagon-like peptide 1 (7, 36) amide (GLP-1) and cholecystokinin (CCK) and DMI regulation has not been established in ruminants. Three randomized complete block experiments were conducted to determine the effect of feeding fat or infusing GLP-1 or CCK intravenously on DMI, nutrient digestibility, and Cr rate of passage (using Cr(2)O(3) as a marker) in wethers. A total of 18 Targhee × Hampshire wethers (36.5 ± 2.5 kg of BW) were used, and each experiment consisted of four 21-d periods (14 d for adaptation and 7 d for infusion and sampling). Wethers allotted to the control treatments served as the controls for all 3 experiments; experiments were performed simultaneously. The basal diet was 60% concentrate and 40% forage. In Exp. 1, treatments were the control (0% added fat) and addition of 4 or 6% Ca salts of palm oil fatty acids (DM basis). Treatments in Exp. 2 and 3 were the control and 3 jugular vein infusion dosages of GLP-1 (0.052, 0.103, or 0.155 µg•kg of BW(-1)•d(-1)) or CCK (0.069, 0.138, or 0.207 µg•kg of BW(-1)•d(-1)), respectively. Increases in plasma GLP-1 and CCK concentrations during hormone infusions were comparable with increases observed when increasing amounts of fat were fed. Feeding fat and infusion of GLP-1 tended (linear, P = 0.12; quadratic, P = 0.13) to decrease DMI. Infusion of CCK did not affect (P > 0.21) DMI. Retention time of Cr in the total gastrointestinal tract decreased (linear, P < 0.01) when fat was fed, but was not affected by GLP-1 or CCK infusion. In conclusion, jugular vein infusion produced similar plasma CCK and GLP-1 concentrations as observed when fat was fed. The effects of feeding fat on DMI may be partially regulated by plasma concentration of GLP-1, but are not likely due solely to changes in a single hormone concentration.
Resumo:
Inflammatory bowel disease (IBD) is a common gastrointestinal disorder of cats with no known aetiological agent. Previous work has suggested that the faecal microbiota of IBD cats is significantly different from that of healthy cats, including significantly lower bifidobacteria, bacteroides and total counts in IBD cats and significantly lower levels of sulfate-reducing bacteria in healthy cats. Prebiotics, including galactooligosaccharides (GOS), have been shown to elicit a bifidogenic effect in humans and other animals. The purpose of the current study was to examine the impact of a novel GOS supplementation on the faecal microbiota of healthy and IBD cats during a randomized, double-blind, cross-over feeding study. Eight oligonucleotide probes targeting specific bacterial populations and DAPI stain (total bacteria) were used to monitor the feline faecal microbiota. Overall, inter-animal variation was high; while a trend of increased bifidobacterial levels was seen with GOS supplementation it was not statistically significant in either healthy or IBD cats. No significant differences were observed in the faecal microbiota of IBD cats and healthy cats fed the same diet. Members of the family Coriobacteriaceae (Atopobium cluster) were found to be the most abundant bacteria in the feline microbiota.
Resumo:
There is growing interest in the role of gastrointestinal (GI) pathology and clinical expression of autism. Recent studies have demonstrated differences in the faecal clostridial populations harboured by autistic and non-autistic children. The potential of Lactobacillus plantarum WCSF1 (a probiotic) to modulate the gut microbiota of autistic subjects was investigated during a double-blind, placebo-controlled, crossover-designed feeding study. The faecal microbiota, gut function and behaviour scores of subjects were examined throughout the 12-week study. Lactobacillus plantarum WCFS1 feeding significantly increased Lab158 counts (lactobacilli and enterococci group) and significantly reduced Erec482 counts (Clostridium cluster XIVa) compared to placebo. Probiotic feeding also resulted in significant differences in the stool consistency compared to placebo and behaviour scores (total score and scores for some subscales) compared to baseline. The major finding of this work was the importance of study protocol in relation to the specific considerations of this subject population, with an extremely high dropout rate seen (predominantly during the baseline period). Furthermore, the relatively high inter-individual variability observed suggests that subsequent studies should use defined subgroups of autistic spectrum disorders, such as regressive or late-onset autism. In summary, the current study has highlighted the potential benefit of L. plantarum WCFS1 probiotic feeding in autistic individuals.
Resumo:
Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41–50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.
Resumo:
The present study was carried out to determine whether cephalic stimulation, associated with eating a meal, was sufficient stimulus to provoke the release of stored triacylglycerol (TAG) from a previous high-fat meal. Ten subjects were studied on three separate occasions. Following a 12 h overnight fast, subjects were given a standard mixed test meal which contained 56 g fat. Blood samples were taken before the meal and for 5 h after the meal when the subjects were randomly allocated to receive either water (control) or were modified sham fed a low-fat (6 g fat) or moderate-fat (38 g fat) meal. Blood samples were collected for a further 3 h. Compared with the control, modified sham feeding a low- or moderate-fat meal did not provoke an early entry of TAG, analysed in either plasma or TAG-rich lipoprotein (TRL) fraction (density ,1´006 kg/l). The TRL-retinyl ester data showed similar findings. A cephalic phase secretion of pancreatic polypeptide, without a significant increase in cholecystokinin levels, was observed on modified sham feeding. Although these data indicate that modified sham feeding was carried out successfully, analysis of the fat content of the expectorant showed that our subjects may have accidentally ingested a small amount of fat (0´7 g for the low-fat meal and 2´4 g for the moderate-fat meal). Nevertheless, an early TAG peak following modified sham feeding was not demonstrated in the present study, suggesting that significant ingestion of food, and not just orosensory stimulation, is necessary to provoke the release of any TAG stored from a previous meal.
Resumo:
Background: Vagal stimulation in response to nutrients is reported to elicit an array of digestive and endocrine responses, including an alteration in postprandial lipid metabolism. Objective: The objective of this study was to assess whether neural stimulation could alter hormone and substrate metabolism during the late postprandial phase, with implications for body fat mobilization. Design: Vagal stimulation was achieved by using the modified sham feeding (MSF) technique, in which nutrients are chewed and tasted but not swallowed. Ten healthy subjects were studied on 3 separate occasions, 4 wk apart. Five hours after a high-fat breakfast (56 g fat), the subjects were given 1 of 3 test meals allocated in random order: water, a lunch containing a modest amount of fat (38 g), or MSF (38 g fat). Blood was collected for 3 h poststimulus for hormone and metabolite analyses. Results: Plasma insulin and pancreatic polypeptide concentrations peaked at 250% and 209% of baseline concentrations within 15 min of MSF. The plasma glucose concentration increased significantly (P = 0.038) in parallel with the changes observed in the plasma insulin concentration. The nonesterified fatty acid concentration was significantly suppressed (P = 0.006); maximum suppression occurred at a mean time of 114 min after MSF. This fall in nonesterified fatty acid was accompanied by a fall in the plasma glucagon concentration from 122 to 85 pmol/L (P = 0.018) at a mean time of 113 min after MSF. Conclusions: Effects on substrate metabolism after MSF in the postprandial state differ from those usually reported in the postabsorptive state. The effects of MSF were prolonged beyond the period of the cephalic response and these may be relevant for longer-term metabolic regulation.
Resumo:
Epidemiological studies have shown an inverse relationship between risk of CVD and intake of whole grain (WG)-rich food. Regular consumption of breakfast cereals can provide not only an increase in dietary WG but also improvements to cardiovascular health. Various mechanisms have been proposed, including prebiotic modulation of the colonic microbiota. In the present study, the prebiotic activity of a maize-derived WG cereal (WGM) was evaluated in a double-blind, placebo-controlled human feeding study (n 32). For a period of 21 d, healthy men and women, mean age 32 (sd 8) years and BMI 23·3 (sd 0·58) kg/m2, consumed either 48 g/d WG cereal (WGM) or 48 g placebo cereal (non-whole grain (NWG)) in a crossover fashion. Faecal samples were collected at five points during the study on days 0, 21, 42, 63 and 84 (representing at baseline, after both treatments and both wash-out periods). Faecal bacteriology was assessed using fluorescence in situ hybridisation with 16S rRNA oligonucleotide probes specific for Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum/perfringens subgroup, Lactobacillus–Enterococcus subgroup and total bacteria. After 21 d consumption of WGM, mean group levels of faecal bifidobacteria increased significantly compared with the control cereal (P = 0·001). After a 3-week wash-out period, bifidobacterial levels returned to pre-intervention levels. No statistically significant changes were observed in serum lipids, glucose or measures of faecal output. In conclusion, this WG maize-enriched breakfast cereal mediated a bifidogenic modulation of the gut microbiota, indicating a possible prebiotic mode of action
Resumo:
In this placebo-controlled, double-blind, crossover human feeding study, the effects of polydextrose (PDX; 8 g/d) on the colonic microbial composition, immune parameters, bowel habits and quality of life were investigated. PDX is a complex glucose oligomer used as a sugar replacer. The main goal of the present study was to identify the microbial groups affected by PDX fermentation in the colon. PDX was shown to significantly increase the known butyrate producer Ruminococcus intestinalis and bacteria of the Clostridium clusters I, II and IV. Of the other microbial groups investigated, decreases in the faecal Lactobacillus–Enterococcus group were demonstrated. Denaturing gel gradient electrophoresis analysis showed that bacterial profiles between PDX and placebo treatments were significantly different. PDX was shown to be slowly degraded in the colon, and the fermentation significantly reduced the genotoxicity of the faecal water. PDX also affected bowel habits of the subjects, as less abdominal discomfort was recorded and there was a trend for less hard and more formed stools during PDX consumption. Furthermore, reduced snacking was observed upon PDX consumption. This study demonstrated the impact of PDX on the