49 resultados para island-pit pairs
Resumo:
The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009–2012 period. A combination of isotopic analysis, SEVIRI red-greenblue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 µm and 4.16 µm. Most samples were characterised by modal values of 2.0– 2.8 µm with an average of 2.6 µm and there was no signifi- cant difference between dust from the Sahara and the Middle East.
Resumo:
Using the eye-movement monitoring technique in two reading comprehension experiments, we investigated the timing of constraints on wh-dependencies (so-called ‘island’ constraints) in native and nonnative sentence processing. Our results show that both native and nonnative speakers of English are sensitive to extraction islands during processing, suggesting that memory storage limitations affect native and nonnative comprehenders in essentially the same way. Furthermore, our results show that the timing of island effects in native compared to nonnative sentence comprehension is affected differently by the type of cue (semantic fit versus filled gaps) signalling whether dependency formation is possible at a potential gap site. Whereas English native speakers showed immediate sensitivity to filled gaps but not to lack of semantic fit, proficient German-speaking learners of L2 English showed the opposite sensitivity pattern. This indicates that initial wh-dependency formation in nonnative processing is based on semantic feature-matching rather than being structurally mediated as in native comprehension.
Resumo:
Predicting the future response of the Antarctic Ice Sheet to climate change requires an understanding of the ice streams that dominate its dynamics. Here we use cosmogenic isotope exposure-age dating (26Al, 10Be and 36Cl) of erratic boulders on ice-free land on James Ross Island, north-eastern Antarctic Peninsula, to define the evolution of Last Glacial Maximum (LGM) ice in the adjacent Prince Gustav Channel. These data include ice-sheet extent, thickness and dynamical behaviour. Prior to ∼18 ka, the LGM Antarctic Peninsula Ice Sheet extended to the continental shelf-edge and transported erratic boulders onto high-elevation mesas on James Ross Island. After ∼18 ka there was a period of rapid ice-sheet surface-lowering, coincident with the initiation of the Prince Gustav Ice Stream. This timing coincided with rapid increases in atmospheric temperature and eustatic sea-level rise around the Antarctic Peninsula. Collectively, these data provide evidence for a transition from a thick, cold-based LGM Antarctic Peninsula Ice Sheet to a thinner, partially warm-based ice sheet during deglaciation.
Resumo:
This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, NE Antarctic Peninsula: (1) the Glacier Ice and Snow Assemblage; (2) the Glacigenic Assemblage, which relates to LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet-based ice and ice streams respectively; (3) the Boulder Train Assemblage, deposited during a Mid-Holocene glacier readvance; (4) the Ice-cored Moraine Assemblage, found in front of small cirque glaciers; (5) the Paraglacial Assemblage including scree, pebble-boulder lags, and littoral and fluvial processes; and (6) the Periglacial Assemblage including rock glaciers, protalus ramparts, blockfields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, cold-based ice was capable of sediment and landform genesis and modification. This landsystem model can aid the interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to overrun James Ross Island.
Resumo:
Virtually no information is available on the response of land-terminating Antarctic Peninsula glaciers to climate change on a centennial timescale. This paper analyses the topography, geomorphology and sedimentology of prominent moraines on James Ross Island, Antarctica, to determine geometric changes and to interpret glacier behaviour. The moraines are very likely due to a late-Holocene phase of advance and featured (1) shearing and thrusting within the snout, (2) shearing and deformation of basal sediment, (3) more supraglacial debris than at present and (4) short distances of sediment transport. Retreat of ∼100 m and thinning of 15–20 m has produced a loss of 0.1 km3 of ice. The pattern of surface lowering is asymmetric. These geometrical changes are suggested most simply to be due to a net negative mass balance caused by a drier climate. Comparisons of the moraines with the current glaciological surface structure of the glaciers permits speculation of a transition from a polythermal to a cold-based thermal regime. Small land-terminating glaciers in the northern Antarctic Peninsula region could be cooling despite a warming climate.
Resumo:
While the role of leadership in improving schools is attracting more worldwide attention, there is a need for more research investigating leaders’ experiences in different national contexts. Using focus-group and semi-structured interview data, this paper explores the background, identities and experiences of a small group of Jamaican school leaders who were involved in a leadership development programme. By drawing on the concepts of culture, socialisation and identity, the paper examines how the participants’ journeys of becoming and being school leaders are influenced by national-level societal and cultural issues, experienced at a local level. The findings suggest that in becoming school leaders, the participants perceived that they had a strong sense of agency in attempting to change the social structures within the institutions they lead and in the surrounding local communities, which in turn, they hope, will have a lasting effect on the nation as a whole.
Resumo:
Chongqing is the largest directly-controlled municipality in China, which is now undergoing a rapid urbanization. The urbanization rate increased from 35.6% in 2000 to 48.3% in 2007, and it is estimated to reach at least 70% by 2020. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimate? Furthermore, Chongqing is located within the Three Gorges Reservoir (TGR) region and the upper Yangtze River, where the Three Gorges Reservoir (TGR) project started in 1993 and was completed in 2010. As one of the biggest construction projects in the world with a rising water level of 175m and water storage capacity of about 39.3 billion m3, it would be interesting to investigate how such a gigantic project impacts the surrounding micro-environment, especially in Chongqing. Different research approaches are adopted in the study. Our literature review indicates present studies on the urban climate in Chongqing are mainly confined within the historical trend analysis of several weather stations operated by the Chongqing government, little is known about the spatial distribution of urban air temperature and how the local land cover influences the air temperature, especially when there are rivers running through the Chongqing urban area. To contribute to the present knowledge, a series of field measurement campaigns and numerical simulations were carried out. Two complementary types of field measurements are included: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.
Resumo:
This paper discusses 226 earlier Neolithic pits found at Kilverstone in Norfolk. In particular, it focuses on the dynamics involved in the site's creation, investigating what had happened to the material found in the pits prior to deposition, and exploring the material connections (refitting sherds and flints) across the site. As a result of these material insights, it proved possible to shed important light on the character of that place in particular, and on the temporality of Neolithic deposition and occupation in general.
Resumo:
It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.
Resumo:
The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of cheap meteorological sensors, it is possible to measure the spatial patterns of urban atmospheric characteristics with greater resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when measurement points are providing additional information and also the minimum number of sensors needed to provide spatial information for particular applications. Here we consider the example of temperature data, and the urban heat island, through analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing urban temperature networks and in how networks can be enhanced by new mobile and open data sources.
Resumo:
Four stalagmites covering the last 7.0 ka were sampled on Socotra, an island in the northern Indian Ocean to investigate the evolution of the northeast Indian Ocean Monsoon (IOM) since the mid Holocene. On Socotra, rain is delivered at the start of the southwest IOM in May–June and at the start of the northeast IOM from September to December. The Haggeher Mountains act as a barrier forcing precipitation brought by the northeast winds to fall preferentially on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites reflect precipitation amounts brought by the northeast winds. For stalagmite STM6, this amount effect is amplified by kinetic effects during calcite deposition. Combined interpretation of the stalagmites' signals suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. No link can be established with Greenland ice cores and with the summer IOM variability. In contrast to the stable northeast rainy season suggested by the records in this study, speleothem records from western Socotra indicate a wettening of the southwest rainy season on Socotra after 4.4 ka. The local wettening of western Socotra could relate to a more southerly path (more over the Indian Ocean) taken by the southwest winds. Stalagmite STM5, sampled at the fringe between both rain areas displays intermediate δ18O values. After 6.2 ka, similar precipitation changes are seen between eastern Socotra and northern Oman indicating that both regions are affected similarly by the monsoon. Different palaeoclimatologic records from the Arabian Peninsula currently located outside the ITCZ migration pathway display an abrupt drying around 6 ka due to their disconnection from the southwest rain influence. Records that are nowadays still receiving rain by the southwest winds, suggest a more gradual drying reflecting the weakening of the southwest monsoon.
Resumo:
Perception is linked to action via two routes: a direct route based on affordance information in the environment and an indirect route based on semantic knowledge about objects. The present study explored the factors modulating the recruitment of the two routes, in particular which factors affecting the selection of paired objects. In Experiment 1, we presented real objects among semantically related or unrelated distracters. Participants had to select two objects that can interact. The presence of distracters affected selection times, but not the semantic relations of the objects with the distracters. Furthermore, participants first selected the active object (e.g. teaspoon) with their right hand, followed by the passive object (e.g. mug), often with their left hand. In Experiment 2, we presented pictures of the same objects with no hand grip, congruent or incongruent hand grip. Participants had to decide whether the two objects can interact. Action decisions were faster when the presentation of the active object preceded the presentation of the passive object, and when the grip was congruent. Interestingly, participants were slower when the objects were semantically but not functionally related; this effect increased with congruently gripped objects. Our data showed that action decisions in the presence of strong affordance cues (real objects, pictures of congruently gripped objects) relied on sensory-motor representation, supporting the direct route from perception-to-action that bypasses semantic knowledge. However, in the case of weak affordance cues (pictures), semantic information interfered with action decisions, indicating that semantic knowledge impacts action decisions. The data support the dual-route account from perception-to-action.
Resumo:
Recent urban air temperature increase is attributable to the climate change and heat island effects due to urbanization. This combined effects of urbanization and global warming can penetrate into the underground and elevate the subsurface temperature. In the present study, over-100 years measurements of subsurface temperature at a remote rural site were analysed, and an increasing rate of 0.17⁰C per decade at soil depth of 30cm due to climate change was identified in the UK, but the subsurface warming in an urban site showed a much higher rate of 0.85⁰C per decade at a 30cm depth and 1.18⁰C per decade at 100cm. The subsurface urban heat island (SUHI) intensity obtained at the paired urban-rural stations in London showed an unique 'U-shape', i.e. lowest in summer and highest during winter. The maximum SUHII is 3.5⁰C at 6:00 AM in December, and the minimum UHII is 0.2⁰C at 18:00PM in July. Finally, the effects of SUHI on the energy efficiency of the horizontal ground source heat pump (GSHP) were determined. Provided the same heat pump used, the installation at an urban site will maintain an overall higher COP compared with that at a rural site in all seasons, but the highest COP improvement can be achieved in winter.
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.