133 resultados para interplanetary dust particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of the non-radial flows (NRFs) during nearly five years of interplanetary observations revealed the average non-radial speed of the solar wind flows to be �30 km/s, with approximately one-half of the large (>100 km/s) NRFs associated with ICMEs. Conversely, the average non-radial flow speed upstream of all ICMEs is �100 km/s, with just over one-third preceded by large NRFs. These upstream flow deflections are analysed in the context of the large-scale structure of the driving ICME. We chose 5 magnetic clouds with relatively uncomplicated upstream flow deflections. Using variance analysis it was possible to infer the local axis orientation, and to qualitatively estimate the point of interception of the spacecraft with the ICME. For all 5 events the observed upstream flows were in agreement with the point of interception predicted by variance analysis. Thus we conclude that the upstream flow deflections in these events are in accord with the current concept of the large scale structure of an ICME: a curved axial loop connected to the Sun, bounded by a curved (though not necessarily circular)cross section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of the solar wind conditions in near-Earth space, arising from both quasi-steady and transient structures, is essential for space weather forecasting. To achieve forecast lead times of a day or more, such predictions must be made on the basis of remote solar observations. A number of empirical prediction schemes have been proposed to forecast the transit time and speed of coronal mass ejections (CMEs) at 1 AU. However, the current lack of magnetic field measurements in the corona severely limits our ability to forecast the 1 AU magnetic field strengths resulting from interplanetary CMEs (ICMEs). In this study we investigate the relation between the characteristic magnetic field strengths and speeds of both magnetic cloud and noncloud ICMEs at 1 AU. Correlation between field and speed is found to be significant only in the sheath region ahead of magnetic clouds, not within the clouds themselves. The lack of such a relation in the sheaths ahead of noncloud ICMEs is consistent with such ICMEs being skimming encounters of magnetic clouds, though other explanations are also put forward. Linear fits to the radial speed profiles of ejecta reveal that faster-traveling ICMEs are also expanding more at 1 AU. We combine these empirical relations to form a prediction scheme for the magnetic field strength in the sheaths ahead of magnetic clouds and also suggest a method for predicting the radial speed profile through an ICME on the basis of upstream measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550) is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550) are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different models (Mie-derived refractive indices, but also filter sampling composition assuming both internal and external mixing). Our calculations indicate that Mie-derived values of ni550 and the externally mixed dust where the iron oxide-clay aggregate corresponds to the goethite-kaolinite combination result in the best agreement with irradiance measurements. The radiative effect of the dust is found to be very sensitive to the mineral combination (and hence refractive index) assumed, and to whether the dust is assumed to be internally or externally mixed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeolian mineral dust aerosol is an important consideration in the Earth's radiation budget as well as a source of nutrients to oceanic and land biota. The modelling of aeolian mineral dust has been improving consistently despite the relatively sparse observations to constrain them. This study documents the development of a new dust emissions scheme in the Met Office Unified ModelTM (MetUM) based on the Dust Entrainment and Deposition (DEAD) module. Four separate case studies are used to test and constrain the model output. Initial testing was undertaken on a large dust event over North Africa in March 2006 with the model constrained using AERONET data. The second case study involved testing the capability of the model to represent dust events in the Middle East without being re-tuned from the March 2006 case in the Sahara. While the model is unable to capture some of the daytime variation in AERONET AOD there is good agreement between the model and observed dust events. In the final two case studies new observations from in situ aircraft data during the Dust Outflow and Deposition to the Ocean (DODO) campaigns in February and August 2006 were used. These recent observations provided further data on dust size distributions and vertical profiles to constrain the model. The modelled DODO cases were also compared to AERONET data to make sure the radiative properties of the dust were comparable to observations. Copyright © 2009 Royal Meteorological Society and Crown Copyright

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.