40 resultados para inosine-monophosphate dehydrogenase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined Na+–H+exchanger isoform 1 (NHE-1) mRNA expression in ventricular myocardium and its correlation with sarcolemmal NHE activity in isolated ventricular myocytes, during postnatal development in the rat. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA did not change in ventricular myocardium between 2 and 42 days after birth. Therefore, at seven time points within that age range, GAPDH expression was used to normalize NHE-1 mRNA levels, as determined by reverse transcription polymerase chain reaction analysis. There was a progressive five-fold reduction in NHE-1 mRNA expression in ventricular myocardium from 2 days to 42 days of age. As an index of NHE activity, acid efflux rates (JH) were determined in single neonatal (2–4-day-old) and adult (42-day-old) ventricular myocytes (n=16/group) loaded with the pH fluoroprobe carboxy-seminaphthorhodafluor-1. In HEPES-buffered medium, basal intracellular pH (pHi) was similar at 7.28±0.02 in neonatal and 7.31±0.02 in adult myocytes, but intrinsic buffering power was lower in the former age group. The rate at which pHirecovered from a similar acid load was significantly greater in neonatal than in adult myocytes (0.36±0.07v0.16±0.02 pH units/min at pHi=6.8). This was reflected by a significantly greaterJH(22±4v9±1 pmol/cm2/s at pHi=6.8), indicating greater sarcolemmal NHE activity in neonatal myocytes. The concomitant reductions in tissue NHE-1 mRNA expression and sarcolemmal NHE activity suggest that myocardial NHE-1 is subject to regulation at the mRNA level during postnatal development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the reaction of SnMe2Cl2 with adenosine, guanosine and inosine in aqueous solution at pH 4.5. The nucleosides give probably polymeric species in which there is monodentate coordination to O2′ of the ribose ring as indicated by 80 MHz PMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen sulfide (H(2)S) has recently been proposed as an endogenous mediator of inflammation and is present in human synovial fluid. This study determined whether primary human articular chondrocytes (HACs) and mesenchymal progenitor cells (MPCs) could synthesize H(2)S in response to pro-inflammatory cytokines relevant to human arthropathies, and to determine the cellular responses to endogenous and pharmacological H(2)S. HACs and MPCs were exposed to IL-1β, IL-6, TNF-α and lipopolysaccharide (LPS). The expression and enzymatic activity of the H(2)S synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) were determined by Western blot and zinc-trap spectrophotometry, respectively. Cellular oxidative stress was induced by H(2)O(2), the peroxynitrite donor SIN-1 and 4-hydroxynonenal (4-HNE). Cell death was assessed by 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (DCm) was determined in situ by flow cytometry. Endogenous H(2) S synthesis was inhibited by siRNA-mediated knockdown of CSE and CBS and pharmacological inhibitors D,L-propargylglycine and aminoxyacetate, respectively. Exogenous H(2)S was generated using GYY4137. Under basal conditions HACs and MPCs expressed CBS and CSE and synthesized H(2)S in a CBS-dependent manner, whereas CSE expression and activity was induced by treatment of cells with IL-1β, TNF-α, IL-6 or LPS. Oxidative stress-induced cell death was significantly inhibited by GYY4137 treatment but increased by pharmacological inhibition of H(2)S synthesis or by CBS/CSE-siRNA treatment. These data suggest CSE is an inducible source of H(2)S in cultured HACs and MPCs. H(2)S may represent a novel endogenous mechanism of cytoprotection in the inflamed joint, suggesting a potential opportunity for therapeutic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Listeria monocytogenes, the causative agent of human listeriosis, is known for its ability to withstand severe environmental stresses. The glutamate decarboxylase (GAD) system is one of the principal systems utilized by the bacterium to cope with acid stress, a reaction that produces γ-aminobutyrate (GABA) from glutamate. Recently, we have shown that GABA can accumulate intracellularly under acidic conditions, even under conditions where no extracellular glutamate-GABA exchange is detectable. The GABA shunt, a pathway that metabolizes GABA to succinate, has been described for several other bacterial genera, and the present study sought to determine whether L. monocytogenes has this metabolic capacity, which, if present, could provide a possible route for succinate biosynthesis in L. monocytogenes. Using crude protein extracts from L. monocytogenes EGD-e, we show that this strain exhibits activity for the two main enzyme reactions in the GABA shunt, GABA aminotransferase (GABA-AT) and succinic semialdehyde dehydrogenase (SSDH). Two genes were identified as candidates for encoding these enzyme activities, argD (GABA-AT) and lmo0913 (SSDH). Crude protein extracts prepared from a mutant lacking a functional argD gene significantly reduced GABA-AT activity, while an lmo0913 mutant lost all detectable SSDH activity. The deletion of lmo0913 increased the acid tolerance of EGD-e and showed an increased accumulation of intracellular GABA, suggesting that this pathway plays a significant role in the survival of this pathogen under acidic conditions. This is the first report of such a pathway in the genus Listeria, which highlights an important link between metabolism and acid tolerance and also presents a possible compensatory pathway to partially overcome the incomplete tricarboxylic acid cycle of Listeria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vicine and convicine are anti-nutritional compounds that accumulate in the cotyledons of faba beans. When humans consume beans with high levels of these compounds, it can cause a condition called favism in individuals harbouring a deficiency in the activity of their glucose-6-phosphate dehydrogenase. When faba beans are used in animal feeds, there can be effects on performance. These concerns have resulted in increasing interest within plant breeding in developing low vicine and convicine faba bean germplasm. In order to facilitate this objective, we developed a rapid and robust screening method for vicine and convicine, capable of distinguishing between faba beans that are either high (wild type) or low in vicine and convicine. In the absence of reliable commercial reference materials, we report an adaptation of a previously published method where a biochemical assay and spectral data were used to confirm the identity of our analytes, vicine and convicine. This method could be readily adopted in other facilities and open the way to the efficient exploitation of diverse germplasm in regions where faba beans play a significant role in human nutrition. We screened a collection of germplasm of interest to a collaborative plant breeding programme developing between the National Institute for Agricultural Botany in the UK and L'Institut Nationale d'Agronomie de Tunisie in Tunisia. We report the results obtained and discuss the prospects for developing molecular markers for the low vicine and convicine trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azoles and Succinate Dehydrogenase Inhibitors (SDHIs) are the main fungicides available for septoria tritici blotch control, causal agent Zymoseptoria tritici. Decline in azole sensitivity, in combination with European legislation, poses a threat to wheat production in Ireland. Azole fungicides select CYP51 mutations differentially; it was hypothesised that using combinations of azoles could be an effective anti-resistance tool. Naturally inoculated field experiments were carried out in order to understand the impacts of using combinations of azoles, epoxiconazole and metconazole, on azole sensitivity. Approximately 3700 isolates were isolated and their sensitivity to both azoles analysed. Findings showed that limiting the number of applications, by alternating each fungicide, slowed selection for reduced azole sensitivity. Limiting azole use by reducing doses did not reduce selection for decreased azole sensitivity. Although not complete, cross-resistance was observed between the two azoles, which will lead to general reduction in azole sensitivity. A sub-selection of isolates from each treatment at each location were analysed for changes in the CYP51 gene. Sequence analysis identified 49 combinations of mutations in the CYP51 gene, and three different inserts in the CYP51 promoter. Intragenic recombination also featured in these populations. Baseline studies of five new SDHIs were carried out on 209 naturally infected, non-SDHI-treated isolates. With the exception of fluopyram, cross-resistance was apparent between the SDHIs. Analysis of 2300 isolates found that when compared to the solo products, mixing the SDHI isopyrazam and the azole epoxiconazole increased epoxiconazole sensitivity, but had no apparent effect on isopyrazam sensitivity. SDHI resistance-conferring mutations were absent in the baseline and experimental isolates. As long as azoles are used, Z. tritici populations will continue to evolve towards resistance. Combining different modes-of-action, SDHIs and multi-sites, with azoles will relieve some of that selective pressure. To get the best out of available fungicides, they should be used in combination with host resistance and good crop management practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Succinate dehydrogenase inhibitor fungicides are important in the management of Zymoseptoria tritici in wheat. New active ingredients from this group of fungicides have been introduced recently and are widely used. Because the fungicides act at a single enzyme site, resistance development in Z. tritici is classified as medium-to-high risk. RESULTS: Isolates from Irish experimental plots in 2015 were tested against the SDHI penthiopyrad during routine monitoring. The median of the population was approximately 2 x less sensitive than the median of the baseline population. Two of the 93 isolates were much less sensitive to penthiopyrad than least sensitive of the baseline isolates. These isolates were also insensitive to most of commercially available SDHIs. Analysis of the succinate dehydrogenase coding genes confirmed the presence of the substitutions SdhC-H152R and SdhD-R47W in the very insensitive isolates. CONCLUSION: This is the first report showing that the SdhC-H152R mutation detected in laboratory mutagenesis studies also exists in the field. The function and relevance of this mutation, combined with SdhD-R47W, still needs to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are over 500 candidate secreted effector proteins (CSEPs) or Blumeria effector candidates (BECs) specific to the barley powdery mildew pathogen Blumeria graminis f.sp. hordei. The CSEP/BEC proteins are expressed and predicted to be secreted by biotrophic feeding structures called haustoria. Eight BECs are required for the formation of functional haustoria. These include the RNase-like effector BEC1054 (synonym CSEP0064). In order to identify host proteins targeted by BEC1054, recombinant BEC1054 was expressed in E. coli, solubilized, and used in pull-down assays from barley protein extracts. Many putative interactors were identified by LC-MS/MS after subtraction of unspecific binders in negative controls. Therefore, a directed yeast-2-hybrid assay, developed to measure the effectiveness of the interactions in yeast, was used to validate putative interactors. We conclude that BEC1054 may target several host proteins, including a glutathione-S-transferase, a malate dehydrogenase, and a pathogen-related-5 protein isoform, indicating a possible role for BEC1054 in compromising well-known key players of defense and response to pathogens. In addition, BEC1054 interacts with an elongation factor 1 gamma. This study already suggests that BEC1054 plays a central role in barley powdery mildew virulence by acting at several levels.