100 resultados para in-situ-hybridization
Resumo:
Gold nanoparticles with a polymer coating exhibiting large and reversible thermoresponsiveness are prepared via a one-pot synthesis method using narrow polydispersity thermoresponsive block copolymers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nanocomposites of high-density polyethylene (HDPE) and carbon nanotubes (CNT) of different geometries (single wall, double wall, and multiwall; SWNT, DWNT, and MWNT) were prepared by in situ polymerization of ethylene on CNT whose surface had been previously treated with a metallocene catalytic system. In this work, we have studied the effects of applying the successive self-nucleation and annealing thermal fractionation technique (SSA) to the nanocomposites and have also determined the influence of composition and type of CNT on the isothermal crystallization behavior of the HDPE. SSA results indicate that all types of CNT induce the formation of a population of thicker lamellar crystals that melt at higher temperatures as compared to the crystals formed in neat HDPE prepared under the same catalytic and polymerization conditions and subjected to the same SSA treatment. Furthermore, the peculiar morphology induced by the CNT on the HDPE matrix allows the resolution of thermal fractionation to be much better. The isothermal crystallization results indicated that the strong nucleation effect caused by CNT reduced the supercooling needed for crystallization. The interaction between the HDPE chains and the surface of the CNT is probably very strong as judged by the results obtained, even though it is only physical in nature. When the total crystallinity achieved during isothermal crystallization is considered as a function of CNT content, it was found that a competition between nucleation and topological confinement could account for the results. At low CNT content the crystallinity increases (because of the nucleating effect of CNT on HDPE), however, at higher CNT content there is a dramatic reduction in crystallinity reflecting the increased confinement experienced by the HDPE chains at the interfaces which are extremely large in these nanocomposites. Another consequence of these strong interactions is the remarkable decrease in Avrami index as CNT content increases. When the Avrami index reduces to I or lower, nucleation dominates the overall kinetics as a consequence of confinement effects. Wide-angle X-ray experiments were performed at a high-energy synchrotron source and demonstrated that no change in the orthorhombic unit cell of HDPE occurred during crystallization with or without CNT.
Resumo:
Bimetallic Pd-Ru nanoparticles of different elemental ratios are prepared via in situ reduction of their simple salts in reverse micelles in supercritical carbon dioxide (scCO(2)). The optimised Pd:Ru (1: 1) nanoparticle shows the highest activity for hydrogenation of functionalised alkene under mild conditions, which can be easily recycled under the reaction conditions without use of organic solvent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gluco-oligosaccharides produced by Gluconobacter oxydans NCIMB 4943 from maltodextrin as the source, were evaluated for their fermentability by the human colonic microflora. The selectivity of growth of desirable bacteria in the human colon was studied in a three-stage continuous model of the human large intestine. Populations of bacteria, and their fluctuations as a response to the fermentation, were enumerated using fluorescent in situ hybridization (FISH). The gluco-oligosaccharides resulted in increases in numbers of bifidobacteria and the Lactobacillus/Enterococcus group in all 3 vessels of the system, representing the proximal, transverse and distal colonic areas. The prebiotic indices of the glucooligosaccharides were 2.29, 4.23 and 2.74 in V1, V2 and V3 respectively.
Resumo:
The aim of this study was to develop selectively fermented (prebiotic) carbohydrate molecules which would also result in the generation of butyric acid. Glucooligosaccharides produced by Gluconobacter oxydans NCIMB 4943 from various types of maltodextrins were evaluated for their fermentation by mixed cultures of human colonic microflora. The selectivity of growth of desirable bacteria (bifidobacteria, lactobacilli) was studied in stirred pH-controlled (6.8) batch cultures. Bacterial populations were enumerated using fluorescent in situ hybridization (FISH). Gluco-oligosaccharides resulted in significantly (P<0.05) increased numbers of bifidobacteria and lactobacilli within 24 hours. Bacteroides, clostridial and eubacterial populations were slightly decreased at 48 h. There was very little difference in selectivity between the maltodextrin substrates and the products, although maltodextrin displayed a slightly less selective fermentation than the gluco-oligosaccharide products, also stimulating the growth of bacteroides, clostridia and eubacteria. Gluco-oligosaccharides, produced from G19 maltodextrin, resulted in the best prebiotic effect with the highest prebiotic index (PI) of 5.90 at 48 hours. Acetate, propionate and butyrate were all produced from glucooligosaccharides, derived from G19 maltodextrin, at 48 hours but no lactate or formate were detected.
Resumo:
Background: The pathogenesis of diarrhea in patients receiving enteral feeding includes colonic water secretion, antibiotic prescription, and enteropathogenic colonization, each of which involves an interaction with the gastrointestinal microbiota. Objective: The objective was to investigate temporal changes in the concentrations of fecal microbiota and short-chain fatty acids (SCFAs) in patients starting 14-d of enteral feeding and to compare these changes between patients who do and do not develop diarrhea. Design: Twenty patients starting exclusive nasogastric enteral feeding were monitored for 14 d. Fecal samples were collected at the start, middle, and end of this period and were analyzed for major bacterial groups by using culture independent fluorescence in situ hybridization and for SCFAs by using gas-liquid chromatography. Results: Although no significant changes in fecal microbiota or SCFAs were observed during enteral feeding, stark alterations occurred within individual patients. Ten patients (50%) developed diarrhea, and these patients had significantly higher concentrations of clostridia (P = 0.026) and lower concentrations (P = 0.069) and proportions (P = 0.029) of bifidobacteria. Patients with and without diarrhea had differences in the proportion of bifidobacteria (median: 0.4% and 3.7%; interquartile range: 0.8 compared with 4.3; P = 0.035) and clostridia (median: 10.4% and 3.7%; interquartile range: 14.7 compared with 7.0; P = 0.063), respectively, even at the start of enteral feeding. Patients who developed diarrhea had higher concentrations of total fecal SCFAs (P = 0.044), acetate (P = 0.029), and butyrate (P = 0.055). Conclusion: Intestinal dysbiosis occurs in patients who develop diarrhea during enteral feeding and may be involved in its pathogenesis. Am J Clin Nutr 2009; 89: 240-7.
Resumo:
Aim: The aim of this study was to measure the gastrointestinal survival of Lactobacillus casei and its impact on the gut microflora in healthy human volunteers. Methods and Results: Twenty healthy volunteers took part in a double-blind placebo-controlled probiotic feeding study (10 fed probiotic, 10 fed placebo). The probiotic was delivered in two 65 ml aliquots of fermented milk drink (FMD) daily for 21 days at a dose of 8.6 +/- 0.1 Log(10)Lact. casei CFU ml(-1) FMD. Faecal samples were collected before, during and after FMD or placebo consumption, and important groups of faecal bacteria enumerated by fluorescent in situ hybridization (FISH) using oligonucleotide probes targeting the 16S rRNA. The fed Lact. casei was enumerated using selective nutrient agar and colony identity confirmed by pulsed field gel electrophoresis. Seven days after ingestion of FMD, the Lact. casei was recovered from faecal samples taken from the active treatment group at 7.1 +/- 0.4 Log(10) CFU g(-1) faeces (mean +/- SD, n = 9) and numbers were maintained at this level until day 21. Lact. casei persisted in six volunteers until day 28 at 5.0 +/- 0.9 Log(10) CFU g(-1) faeces (mean +/- SD, n = 6). Numbers of faecal lactobacilli increased significantly upon FMD ingestion. In addition, the numbers of bifidobacteria were higher on days 7 and 21 than on days 0 and 28 in both FMD fed and placebo fed groups. Consumption of Lact. casei had little discernible effect on other bacterial groups enumerated. Conclusions: Daily consumption of FMD enabled a probiotic Lact. casei strain to be maintained in the gastrointestinal tract of volunteers at a stable relatively high population level during the probiotic feeding period. Significance and Impact of the Study: The study has confirmed that this probiotic version of Lact. casei survives well within the human gastrointestinal tract.
Resumo:
A fermentation system was designed to model the human colonic microflora in vitro. The system provided a framework of mucin beads to encourage the adhesion of bacteria, which was encased within a dialysis membrane. The void between the beads was inoculated with faeces from human donors. Water and metabolites were removed from the fermentation by osmosis using a solution of polyethylene glycol (PEG). The system was concomitantly inoculated alongside a conventional single-stage chemostat. Three fermentations were carried out using inocula from three healthy human donors. Bacterial populations from the chemostat and biofilm system were enumerated using fluorescence in situ hybridization. The culture fluid was also analysed for its short-chain fatty acid (SCFA) content. A higher cell density was achieved in the biofilm fermentation system (taking into account the contribution made by the bead-associated bacteria) as compared with the chemostat, owing to the removal of water and metabolites. Evaluation of the bacterial populations revealed that the biofilm system was able to support two distinct groups of bacteria: bacteria growing in association with the mucin beads and planktonic bacteria in the culture fluid. Furthermore, distinct differences were observed between populations in the biofilm fermenter system and the chemostat, with the former supporting higher populations of clostridia and Escherichia coli. SCFA levels were lower in the biofilm system than in the chemostat, as in the former they were removed via the osmotic effect of the PEG. These experiments demonstrated the potential usefulness of the biofilm system for investigating the complexity of the human colonic microflora and the contribution made by sessile bacterial populations.
Resumo:
In vitro fermentations were carried out by using a model of the human colon to simulate microbial activities of lower gut bacteria. Bacterial populations (and their metabolic products) were evaluated under the effects of various fermentable substrates. Carbohydrates tested were polydextrose, lactitol, and fructo-oligosaccharide (FOS). Bacterial groups of interest were evaluated by fluorescence in situ hybridization as well as by species-specific PCR to determine bifidobacterial species and percent-G+C profiling of the bacterial communities present. Short-chain fatty acids (SCFA) produced during the fermentations were also evaluated. Polydextrose had a stimulatory effect upon colonic bifidobacteria at concentrations of 1 and 2% (using a single and pooled human fecal inoculum, respectively). The bifidogenic effect was sustained throughout all three vessels of the in vitro system (P = 0.01 seen in vessel 3), as corroborated by the bacterial community profile revealed by %G+C analysis. This substrate supported a wide variety of bifidobacteria and was the only substrate where Bifidobacterium infantis was detected. The fermentation of lactitol had a deleterious effect on both bifidobacterial and bacteroides populations (P = 0.01) and decreased total cell numbers. SCFA production was stimulated, however, particularly butyrate (beneficial for host colonocytes). FOS also had a stimulatory effect upon bifidobacterial and lactobacilli populations that used a single inoculum (P = 0.01 for all vessels) as well as a bifidogenic effect in vessels 2 and 3 (P = 0.01) when a pooled inoculum was used. A decrease in bifidobacteria throughout the model was reflected in the percent-G+C profiles.
Resumo:
Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.
Resumo:
Objective: To evaluate the bifidogenic efficacy of two inulin doses in healthy human adults. Design: A double-blind, placebo-controlled, crossover human study. Setting: Food Microbial Sciences Unit, The University of Reading, Reading, UK. Subjects: Thirty healthy volunteers, 15 men, 15 women ( age range 19-35). Interventions: Subjects consumed a chocolate drink containing placebo ( maltodextrin, 8 g/day), 5 g/day inulin and 8 g/day inulin for a 2-week treatment period. Each treatment was followed by a 1-week washout at the end of which volunteers progressed to the next treatment. Faecal samples were obtained at the start of the study ( baseline) and at the end of each treatment and washout period. Fluorescent in situ hybridization was used to monitor populations of Bifidobacterium genus, Bacteroides - Prevotella, Lactobacillus - Enterococcus and Clostridium perfringens - histolyticum subgroup. Results: Bifidobacterial levels increased significantly upon ingestion of both the low ( 9.78 +/- 0.29 log(10) cells/g faeces, P < 0.05) and the high inulin dose ( 9.79 +/- 0.38 log(10) cells/g faeces, P < 0.05) compared to placebo ( 9.64 +/- 0.23 log(10) cells/g faeces). Conclusions: Both inulin doses exhibited a bifidogenic effect but a higher volunteer percentage responded to the high dose. A dose response effect was not observed but the magnitude of increase in bifidobacteria levels depended on their initial numbers. The higher the initial concentrations the smaller was the increase upon ingestion of the active treatments. Sponsorship: Financial support for the completion of this project was provided by Sensus ( Roosendaal, The Netherlands).
Resumo:
Inflammatory bowel disease (IBD) is a common cause of chronic large bowel diarrhoea in cats. Although the aetiology of IBD is unknown, an immune-mediated response to a luminal antigen is thought to be involved. As knowledge concerning the colonic microflora of cats is limited and requires further investigation, the purpose of this study was to determine the presence of specific bacterial groups in normal and IBD cats, and the potential role they play in the health of the host. Total bacterial populations, Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum subgp., Lactobacillus-Enterococcus subgp. and Desulfovibrio spp. were enumerated in 34 healthy cats and 11 IBD cats using fluorescence in situ hybridisation. The study is one of the first to show the presence of Desulfovibrio in cats. Total bacteria, Bifidobacterium spp. and Bacteroides spp. counts were all significantly higher in healthy cats when compared with IBD cats, whereas Desulfovibrio spp. (producers of toxic sulphides) numbers were found to be significantly higher in colitic cats. The information obtained from this study suggests that modulation of bacterial flora by increasing bifidobacteria and decreasing Desulfovibrio spp. may be beneficial to cats with IBD. Dietary intervention may be an important aspect of their treatment.
Resumo:
The fermentation of three arabinoxylan (AX) fractions from wheat by the human fecal microflora was investigated in vitro. Three AX fractions, with average molecular masses of 354, 278, and 66 kDa, were incorporated into miniature-scale batch cultures (with inulin as a positive prebiotic control) with feces from three healthy donors, aged 23-29. Microflora changes were monitored by the culture-independent technique, fluorescent in situ hybridization, and short chain fatty acid (SCFA) and lactic acid production were measured by high-performance liquid chromatography. Total cell numbers increased significantly in all treated cultures, and the fermentation of AX was associated with a proliferation of the bifidobacteria, lactobacilli, and eubacteria groups. Smaller but statistically significant increases in bacteroides and clostridia groups were also observed. All AX fractions had comparable bifidogenic impacts on the microflora at 5 and 12 h, but the 66 kDa AX was particularly selective for lactobacilli. Eubacteria increased significantly on all AX fractions, particularly on 66 kDa AX. As previously reported, inulin gave a selective increase in bifidobacteria. All supplemented cultures showed significant rises in total SCFA production, with a particularly high proportion of butyric acid being produced from AX fermentation. The prebiotic effect, that is, the selectivity of AX for bifidobacteria and lactobacilli groups, increased as the molecular mass of the AX decreased. This suggests that molecular mass may influence the fermentation of AX in the colon.
Resumo:
Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.
Resumo:
Aims: This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave-fructans extracted from Agave tequilana (Predilife). Methods and Results: Five different commercial prebiotics were compared using 24-h pH-controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short-chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Conclusions: Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. Significance and Impact of the Study: This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.