40 resultados para immunoglobulin G1


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doxorubicin is effective against breast cancer, but its major side effect is cardiotoxicity. The aim of this study was to determine whether the efficacy of doxorubicin on cancer cells could be increased in combination with PPARγ agonists or chrono-optimization by exploiting the diurnal cycle. We determined cell toxicity using MCF-7 cancer cells, neonatal rat cardiac myocytes and fibroblasts in this study. Doxorubicin damages the contractile filaments of cardiac myocytes and affects cardiac fibroblasts by significantly inhibiting collagen production and proliferation at the level of the cell cycle. Cyclin D1 protein levels decreased significantly following doxorubicin treatment indicative of a G1 /S arrest. PPARγ agonists with doxorubicin increased the toxicity to MCF-7 cancer cells without affecting cardiac cells. Rosiglitazone and ciglitazone both enhanced anti-cancer activity when combined with doxorubicin (e.g. 50% cell death for doxorubicin at 0.1 μM compared to 80% cell death when combined with rosiglitazone). Thus, the therapeutic dose of doxorubicin could be reduced by 20-fold through combination with the PPARγ agonists, thereby reducing adverse effects on the heart. The presence of melatonin also significantly increased doxorubicin toxicity, in cardiac fibroblasts (1 μM melatonin) but not in MCF-7 cells. Our data show, for the first time, that circadian rhythms play an important role in doxorubicin toxicity in the myocardium; doxorubicin should be administered mid-morning, when circulating levels of melatonin are low, and in combination with rosiglitazone to increase therapeutic efficacy in cancer cells while reducing the toxic effects on the heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. Objective: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. Design: Piglets (n¼14) were weaned onto either an eggbased or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary 1H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). Results: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. Conclusion: The correlation of urinary 1H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multiplatform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage.While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PECAM-1 is a member of the superfamily of immunoglobulins (Ig) and is expressed on platelets at moderate level. PECAM-1 has been reported to have contrasting effects on platelet activation by the collagen receptor GPVI and the integrin, alphaIIbbeta3, even though both receptors signal through Src-kinase regulation of PLCgamma2. The present study compares the role of PECAM-1 on platelet activation by these two receptors and by the lectin receptor, CLEC-2, which also signals via PLCgamma2. Studies using PECAM-1 knockout-mice and cross-linking of PECAM-1 using specific antibodies demonstrated a minor inhibitory role on platelet responses to the above three receptors and also under some conditions to the G-protein agonist thrombin. The degree of inhibition was considerably less than that produced by PGI2, which elevates cAMP. There was no significant difference in thrombus formation on collagen in PECAM-1-/- platelets relative to litter-matched controls. The very weak inhibitory effect of PECAM-1 on platelet activation relative to that of PGI2 indicate that the Ig-receptor is not a major regulator of platelet activation. PECAM-1 has been reported to have contrasting effects on platelet activation. The present study demonstrates a very mild or negligible effect on platelet activation in response to stimulation by a variety of agonists, thereby questioning the physiological role of the immunoglobulin receptor as a major regulator of platelet activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamin A (FlnA) cross-links actin filaments and connects the Von Willebrand factor receptor GPIb-IX-V to the underlying cytoskeleton in platelets. Because FlnA deficiency is embryonic lethal, mice lacking FlnA in platelets were generated by breeding FlnA(loxP/loxP) females with GATA1-Cre males. FlnA(loxP/y) GATA1-Cre males have a macrothrombocytopenia and increased tail bleeding times. FlnA-null platelets have decreased expression and altered surface distribution of GPIbalpha because they lack the normal cytoskeletal linkage of GPIbalpha to underlying actin filaments. This results in approximately 70% less platelet coverage on collagen-coated surfaces at shear rates of 1,500/s, compared with wild-type platelets. Unexpectedly, however, immunoreceptor tyrosine-based activation motif (ITAM)- and ITAM-like-mediated signals are severely compromised in FlnA-null platelets. FlnA-null platelets fail to spread and have decreased alpha-granule secretion, integrin alphaIIbbeta3 activation, and protein tyrosine phosphorylation, particularly that of the protein tyrosine kinase Syk and phospholipase C-gamma2, in response to stimulation through the collagen receptor GPVI and the C-type lectin-like receptor 2. This signaling defect was traced to the loss of a novel FlnA-Syk interaction, as Syk binds to FlnA at immunoglobulin-like repeat 5. Our findings reveal that the interaction between FlnA and Syk regulates ITAM- and ITAM-like-containing receptor signaling and platelet function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin through an immunoreceptor tyrosine-based activation motif (ITAM)-regulated signaling pathway. ITAMs are characterized by two YxxL sequences separated by 6-12 amino acids and are found associated with several classes of immunoglobulin (Ig) and C-type lectin receptors in hematopoietic cells, including Fc receptors. Cross-linking of the Ig GPVI leads to phosphorylation of two conserved tyrosines in the FcR gamma-chain ITAM by Src family tyrosine kinases, followed by binding and activation of the tandem SH2 domain-containing Syk tyrosine kinase and stimulation of a downstream signaling cascade that culminates in activation of phospholipase Cgamma2 (PLCgamma2). In contrast, the C-type lectin receptor CLEC-2 mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. CLEC-2 is a receptor for podoplanin, which is expressed at high levels in several tissues, including type 1 lung alveolar cells, lymphatic endothelial cells, kidney podocytes and some tumors, but is absent from vascular endothelial cells and platelets. In this article, we compare the mechanism of platelet activation by GPVI and CLEC-2 and consider their functional roles in hemostasis and other vascular processes, including maintenance of vascular integrity, angiogenesis and lymphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proanthocyanidins (PAs) in sainfoin (Onobrychis viciifolia Scop.) are of interest to ameliorate the sustainability of livestock production. However, sainfoin forage yield and PA concentrations, as well as their composition, require optimization. Individual plants of 27 sainfoin accessions from four continents were analyzed with LC-ESI-QqQ-MS/MS for PA concentrations and simple phenolic compounds. Large variability existed in PA concentrations (23.0–47.5 mg g–1 leaf dry matter (DM)), share of prodelphinidins (79–96%), and mean degree of polymerization (11–14) among, but also within, accessions. PAs were mainly located in leaves (26.8 mg g–1 DM), whereas stems had less PAs (7.8 mg g–1 DM). Overall, high-yielding plants had lower PA leaf concentrations (R2 = 0.16, P < 0.001) and fewer leaves (R2 = 0.66, P < 0.001). However, the results show that these two trade-offs between yield and bioactive PAs can be overcome.