43 resultados para high yield
Resumo:
The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.
Resumo:
The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea.
Resumo:
To optimise the placement of small wind turbines in urban areas a detailed understanding of the spatial variability of the wind resource is required. At present, due to a lack of observations, the NOABL wind speed database is frequently used to estimate the wind resource at a potential site. However, recent work has shown that this tends to overestimate the wind speed in urban areas. This paper suggests a method for adjusting the predictions of the NOABL in urban areas by considering the impact of the underlying surface on a neighbourhood scale. In which, the nature of the surface is characterised on a 1 km2 resolution using an urban morphology database. The model was then used to estimate the variability of the annual mean wind speed across Greater London at a height typical of current small wind turbine installations. Initial validation of the results suggests that the predicted wind speeds are considerably more accurate than the NOABL values. The derived wind map therefore currently provides the best opportunity to identify the neighbourhoods in Greater London at which small wind turbines yield their highest energy production. The model does not consider street scale processes, however previously derived scaling factors can be applied to relate the neighbourhood wind speed to a value at a specific rooftop site. The results showed that the wind speed predicted across London is relatively low, exceeding 4 ms-1 at only 27% of the neighbourhoods in the city. Of these sites less than 10% are within 10 km of the city centre, with the majority over 20 km from the city centre. Consequently, it is predicted that small wind turbines tend to perform better towards the outskirts of the city, therefore for cities which fit the Burgess concentric ring model, such as Greater London, ‘distance from city centre’ is a useful parameter for siting small wind turbines. However, there are a number of neighbourhoods close to the city centre at which the wind speed is relatively high and these sites can only been identified with a detailed representation of the urban surface, such as that developed in this study.
Resumo:
Research has highlighted the usefulness of the Gilt–Equity Yield Ratio (GEYR) as a predictor of UK stock returns. This paper extends recent studies by endogenising the threshold at which the GEYR switches from being low to being high or vice versa, thus improving the arbitrary nature of the determination of the threshold employed in the extant literature. It is observed that a decision rule for investing in equities or bonds, based on the forecasts from a regime switching model, yields higher average returns with lower variability than a static portfolio containing any combinations of equities and bonds. A closer inspection of the results reveals that the model has power to forecast when investors should steer clear of equities, although the trading profits generated are insufficient to outweigh the associated transaction costs.
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Resumo:
Organo-copper(I) halide complexes with a Cu4I4 cubane core and cyclic amines as ligands have been synthesized and their crystal structures have been defined. Their solid state photophysical properties have been measured and correlated with the crystal structure and packing. A unique and remarkably high luminescence quantum yield (76%) has been measured for one of the complexes having the cubane clusters arranged in a columnar structure and held together by N–HI hydrogen bonds. This high luminescence quantum yield is correlated with a slow radiationless deactivation rate of the excited state and suggests a rather strong enhancement of the cubane core rigidity bestowed by the hydrogen bond pattern. Some preliminary thin film deposition experiments show that these compounds could be considered to be good candidates for applications in electroluminescent devices because of their bright luminescence, low cost and relatively easy synthesis processes
Resumo:
The present study evaluated the effects of climate variability on maize (Zea mays L.) yield in Sri Lanka at different spatial scales. Biophysical data from the Department of Agriculture (DOA) in Sri Lanka for six major maize-growing districts (Ampara, Anuradhapura, Badulla, Hambantota, Moneragala, and Kurunegala) from 1990 to 2010 were analyzed. Simple linear regression models were fitted to observed climate data and detrended maize yield to identify significant correlations. The correlation between first differences of maize yield and climate (r) was further investigated at 0.50° grid scale using interpolated climate data. After 2003, significantly positive (p < 0.01) yield trends varied from 154 kg ha–1 yr–1 to 360 kg ha–1 yr–1. The correlations between maize yield and climate reported that five out of six districts were significant at 10% level. Rainfall had a consistent significant (p < 0.10) positive impact on maize yield in Anuradhapura, Hambantota, and Moneragala, where seasonal total rainfall together with high temperature (“hot-dry”) are the key limitations. Further, the seasonal mean temperature had a negative impact on maize yield in Moneragala (“hot-dry”), the only district that showed high temperatures. Badulla district (“cold-dry”) reported a significant (r = 0.38) positive correlation with mean seasonal temperature, indicating higher potential toward increasing temperatures. Each 1°C rise in seasonal mean temperature reduced maize yield by about 5% from 1990 to 2010. Overall, there was a reasonable correlation between district maize yield and seasonal climate in most of the districts within the maize belt of Sri Lanka.
Resumo:
Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3 h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.
Resumo:
Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric [CO2] since the 1950’s, and it will reach about 550 μmol mol−1 in 2050. Field experiments were conducted at the Free-air CO2 Enrichment facility in Beijing, China. Winter wheat was grown to maturity under elevated [CO2] (550 ± 17 μmol mol−1) and ambient [CO2] (415 ± 16 μmol mol−1), with high nitrogen (N) supply (HN, 170 kg N ha−1) and low nitrogen supply (LN, 100 kg N ha−1) for three growing seasons from 2007 to 2010. Elevated [CO2] increased wheat grain yield by 11.4% across the three years. [CO2]-induced yield enhancements were 10.8% and 11.9% under low N and high N supply, respectively. Nitrogen accumulation under elevated [CO2] was increased by 12.9% and 9.2% at the half-way anthesis and ripening stage across three years, respectively. Winter wheat had higher nitrogen demand under elevated [CO2] than ambient [CO2], and grain yield had a stronger correlation with plant N uptake after anthesis than before anthesis at high [CO2]. Our results suggest that regulating on the N application rate and time, is likely important for sustainable grain production under future CO2 climate.
Resumo:
Groundnuts cultivated in the semiarid tropics are often exposed to water stress (mid-season and end season) and high temperature (> 34 °C) during the critical stages of flowering and pod development. This study evaluated the effects of both water stress and high temperature under field conditions at ICRISAT, India. Treatments included two irrigations (full irrigation, 100 % of crop evapotranspiration; and water stress, 40 % of crop evapotranspiration), four temperature treatments from a combination of two sowing dates and heat tunnels with mean temperatures from sowing to maturity of 26.3° (T1), 27.3° (T2), 29.0° (T3) and 29.7 °C (T4) and two genotypes TMV2 and ICGS 11. The heat tunnels were capable of raising the day temperature by > 10 °C compared to ambient. During the 20-day high-temperature treatment at flowering, mean temperatures were 33.8° (T1), 41.6° (T2), 38.7° (T3) and 43.5°C (T4). The effects of water stress and high temperature were additive and temporary for both vegetative and pod yield, and disappeared as soon as high-temperature stress was removed. Water use efficiency was significantly affected by the main effects of temperature and cultivar and not by water stress treatments. Genotypic differences for tolerance to high temperature can be attributed to differences in flowering pattern, flower number, peg-set and harvest index. It can be inferred from this study that genotypes that are tolerant to water stress are also tolerant to high temperature under field conditions. In addition, genotypes with an ability to establish greater biomass and with a significantly greater partitioning of biomass to pod yield would be suitable for sustaining higher yields in semiarid tropics with high temperature and water stress.
Resumo:
Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33 % on a dry defatted basis, which represents a recovery of 90 % of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.
Resumo:
Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.
Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS
Resumo:
Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-tovacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental setup and optimization strategy is described for liquid AP-MALDI MS which improves the ionization effi- ciency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2 fmol/lL (0.5 lL, i.e. 1 fmol, deposited on the target) with very low sample consumption in the low nL-range.