33 resultados para high optical-to-optical conversion efficiency
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Resumo:
The 2e reduced anion [Mn(CO)3(iPr-DAB)]− (DAB = 1,4- diazabuta-1,3-diene, iPr = isopropyl) was shown to convert in the presence of CO2 and a small amount of water to the unstable complex [Mn(CO)3(iPr-DAB)(η1-OCO2H)] (OCO2H− = unidentate bicarbonate) that was further reductively transformed to give a stable catalytic intermediate denoted as X2, showing νs(OCO) 1672 and 1646 (sh) cm−1. The subsequent cathodic shift by ca. 650 mV in comparison to the single 2e cathodic wave of the parent [Mn(CO)3(iPr-DAB)Br] triggers the reduction of intermediate X2 and catalytic activity converting CO2 to CO. Infrared spectroelectrochemistry has revealed that the high excess of CO generated at the cathode leads to the conversion of [Mn(CO)3(iPr-DAB)]− to inactive [Mn(CO)5]−. In contrast, the five-coordinate anion [Mn(CO)3(pTol-DAB)]−(pTol = 4-tolyl) is completely inert toward both CO2 and H2O (solvolysis). This detailed spectroelectrochemical study is a further contribution to the development of sustainable electro- and photoelectrocatalysts of CO2 reduction based on abundant first-row transition metals, in particular manganese.
Resumo:
The hypothesis that foraging male and female Coccinella septempunctata L. would exhibit a turning bias when walking along a branched linear wire in a Y-maze was tested. Individuals were placed repeatedly in the maze. Approximately 45% of all individuals tested displayed significant turning biases, with a similar number of individuals biased to the left and right. In the maze right-handed individuals turned right at 84.4% of turns and the left-handed individuals turned left at 80.2% of turns. A model of the searching efficiency of C. septempunctata in dichotomous branched environments showed that model coccinellids with greater turning biases discovered a higher proportion of the plant for a given number of searches than those with no bias. A modification of the model to investigate foraging efficiency, by calculating the mean time taken by individuals to find randomly distributed aphid patches, suggested that on four different sizes of plants, with a variety of aphid patch densities, implementing a turning bias was a significantly more efficient foraging strategy than no bias. In general the benefits to foraging of implementing a turning bias increased with the degree of the bias. It may be beneficial for individuals in highly complex branched environments to have a turning bias slightly lower than 100% in order to benefit from increased foraging efficiency without walking in circles. Foraging bias benefits increased with increasing plant size and decreasing aphid density. In comparisons of two different plant morphologies, one with a straight stem and side branches and one with a symmetrically branched morphology, there were few significant differences in the effects of turning biases on foraging efficiency between morphologies