482 resultados para global climate models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975–2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current state-of-the-art global climate models produce different values for Earth’s mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. For example, observed global temperatures over the past decade are towards the lower end of the range of CMIP5 simulations irrespective of what reference period is used, but exactly where they lie in the model distribution varies with the choice of reference period. Additionally, we demonstrate that projections of when particular temperature levels are reached, for example 2K above ‘pre-industrial’, change by up to a decade depending on the choice of reference period. In this article we discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections. We highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them also involves complicated workflows implemented as shell scripts. A new grid middleware system that is well suited to climate modelling applications is presented in this paper. Grid Remote Execution (G-Rex) allows climate models to be deployed as Web services on remote computer systems and then launched and controlled as if they were running on the user's own computer. Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model. G-Rex has a REST architectural style, featuring a Java client program that can easily be incorporated into existing scientific workflow scripts. Some technical details of G-Rex are presented, with examples of its use by climate modellers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-Rex is light-weight Java middleware that allows scientific applications deployed on remote computer systems to be launched and controlled as if they are running on the user's own computer. G-Rex is particularly suited to ocean and climate modelling applications because output from the model is transferred back to the user while the run is in progress, which prevents the accumulation of large amounts of data on the remote cluster. The G-Rex server is a RESTful Web application that runs inside a servlet container on the remote system, and the client component is a Java command line program that can easily be incorporated into existing scientific work-flow scripts. The NEMO and POLCOMS ocean models have been deployed as G-Rex services in the NERC Cluster Grid, and G-Rex is the core grid middleware in the GCEP and GCOMS e-science projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interannual variability of the hydrological cycle is diagnosed from the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models, both of which are forced by observed sea surface temperatures. The models produce a similar sensitivity of clear-sky outgoing longwave radiation to surface temperature of ∼2 W m−2 K−1, indicating a consistent and positive clear-sky radiative feedback. However, differences between changes in the temperature lapse-rate and the height dependence of moisture fluctuations suggest that contrasting mechanisms bring about this result. The GFDL model appears to give a weaker water vapor feedback (i.e., changes in specific humidity). This is counteracted by a smaller upper tropospheric temperature response to surface warming, which implies a compensating positive lapse-rate feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current changes in the tropical hydrological cycle, including water vapour and precipitation, are presented over the period 1979-2008 based on a diverse suite of observational datasets and atmosphere-only climate models. Models capture the observed variability in tropical moisture while reanalyses cannot. Observed variability in precipitation is highly dependent upon the satellite instruments employed and only cursory agreement with model simulations, primarily relating to the interannual variability associated with the El Niño Southern Oscillation. All datasets display a positive relationship between precipitation and surface temperature but with a large spread. The tendency for wet, ascending regions to become wetter at the expense of dry, descending regimes is in general reproduced. Finally, the frequency of extreme precipitation is shown to rise with warming in the observations and for the model ensemble mean but with large spread in the model simulations. The influence of the Earth’s radiative energy balance in relation to changes in the tropical water cycle are discussed