69 resultados para forward pump


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assesses the current state of adult skeletal age-at-death estimation in biological anthropology through analysis of data published in recent research articles from three major anthropological and archaeological journals (2004–2009). The most commonly used adult ageing methods, age of ‘adulthood’, age ranges and the maximum age reported for ‘mature’ adults were compared. The results showed a wide range of variability in the age at which individuals were determined to be adult (from 14 to 25 years), uneven age ranges, a lack of standardisation in the use of descriptive age categories and the inappropriate application of some ageing methods for the sample being examined. Such discrepancies make comparisons between skeletal samples difficult, while the inappropriate use of some techniques make the resultant age estimations unreliable. At a time when national and even global comparisons of past health are becoming prominent, standardisation in the terminology and age categories used to define adults within each sample is fundamental. It is hoped that this research will prompt discussions in the osteological community (both nationally and internationally) about what defines an ‘adult’, how to standardise the age ranges that we use and how individuals should be assigned to each age category. Skeletal markers have been proposed to help physically identify ‘adult’ individuals.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is substantial research interest in tutor feedback and students’ perception and use of such feedback. This paper considers some of the major issues raised in relation to tutor feedback and student learning. We explore some of the current feedback drivers, most notably the need for feedback to move away from simply a monologue from a tutor to a student to a valuable tutor–student dialogue. In relation to moving feedback forward the notions of self regulation, dialogue and social learning are explored and then considered in relation to how such theory can translate into practice. The paper proposes a framework (GOALS) as a tool through which tutors can move theory into practice with the aim of improving student learning from feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing high quality and timely feedback to students is often a challenge for many staff in higher education as it can be both time-consuming and frustratingly repetitive. From the student perspective, feedback may sometimes be considered unhelpful, confusing and inconsistent and may not always be provided within a timeframe that is considered to be ‘useful’. The ASSET project, based at the University of Reading, addresses many of these inherent challenges by encouraging the provision of feedback that supports learning, i.e. feedback that contains elements of ‘feed-forward’, is of a high quality and is delivered in a timely manner. In particular, the project exploits the pedagogic benefits of video/audio media within a Web 2.0 context to provide a new, interactive resource, ‘ASSET’, to enhance the feedback experience for both students and staff. A preliminary analysis of both our quantitative and qualitative pedagogic data demonstrate that the ASSET project has instigated change in the ways in which both staff and students think about, deliver, and engage with feedback. For example, data from our online questionnaires and focus groups with staff and students indicate a positive response to the use of video as a medium for delivering feedback to students. In particular, the academic staff engaged in piloting the ASSET resource indicated that i) using video has made them think more, and in some cases differently, about the ways in which they deliver feedback to students and ii) they now see video as an effective means of making feedback more useful and engaging for students. Moreover, the majority of academic staff involved in the project have said they will continue to use video feedback. From the student perspective, 60% of those students whose lecturers used ASSET to provide video feedback said that “receiving video feedback encouraged me to take more notice of the feedback compared with normal methods” and 80% would like their lecturer to continue to use video as a method for providing feedback. An important aim of the project was for it to complement existing University-wide initiatives on feedback and for ASSET to become a ‘model’ resource for staff and students wishing to explore video as a medium for feedback provision. An institutional approach was therefore adopted and key members of Senior Management, academics, T&L support staff, IT support and Student Representatives were embedded within the project from the start. As with all initiatives of this kind, a major issue is the future sustainability of the ASSET resource and to have had both ‘top-down’ and ‘bottom-up’ support for the project has been extremely beneficial. In association with the project team the University is currently exploring the creation of an open-source, two-tiered video supply solution and a ‘framework’ (that other HEIs can adopt and/or adapt) to support staff in using video for feedback provision. In this way students and staff will have new opportunities to explore video and to exploit the benefits of this medium for supporting learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In countries that have experienced rapid economic development, the need to establish more efficient markets in which private property can be constructed has induced some innovative solutions. One such solution is the phenomenon of a pre-sales market of the kind that can be observed in Taiwan, Korea, and more recently in China. Developers sell their property before building is started in order to acquire financing for the development companies. This paper discusses the process and, by recognising the analogy between the pre-sales market and forwards markets, analyses the implications for developers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.