47 resultados para extension publications
Resumo:
We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.
Resumo:
The study was undertaken to investigate how willing would farmers be to pay for agricultural extension service in Nigeria. A multistage random sampling technique was used to select 268 respondents. Results showed that most farmers (95.1 per cent) were willing to pay for improved extension service as long as the service remained relevant to their needs. Farmers were willing to pay N1000 annually as their own share of the service cost. The most important factors that influenced farmers’ willingness to pay were states of origin, items originally paid for, major occupation, minor occupation, number of years in school and sale of farm produce.
Resumo:
Food security is one of this century’s key global challenges. By 2050 the world will require increased crop production in order to feed its predicted 9 billion people. This must be done in the face of changing consumption patterns, the impacts of climate change and the growing scarcity of water and land. Crop production methods will also have to sustain the environment, preserve natural resources and support livelihoods of farmers and rural populations around the world. There is a pressing need for the ‘sustainable intensifi cation’ of global agriculture in which yields are increased without adverse environmental impact and without the cultivation of more land. Addressing the need to secure a food supply for the whole world requires an urgent international effort with a clear sense of long-term challenges and possibilities. Biological science, especially publicly funded science, must play a vital role in the sustainable intensifi cation of food crop production. The UK has a responsibility and the capacity to take a leading role in providing a range of scientifi c solutions to mitigate potential food shortages. This will require signifi cant funding of cross-disciplinary science for food security. The constraints on food crop production are well understood, but differ widely across regions. The availability of water and good soils are major limiting factors. Signifi cant losses in crop yields occur due to pests, diseases and weed competition. The effects of climate change will further exacerbate the stresses on crop plants, potentially leading to dramatic yield reductions. Maintaining and enhancing the diversity of crop genetic resources is vital to facilitate crop breeding and thereby enhance the resilience of food crop production. Addressing these constraints requires technologies and approaches that are underpinned by good science. Some of these technologies build on existing knowledge, while others are completely radical approaches, drawing on genomics and high-throughput analysis. Novel research methods have the potential to contribute to food crop production through both genetic improvement of crops and new crop and soil management practices. Genetic improvements to crops can occur through breeding or genetic modifi cation to introduce a range of desirable traits. The application of genetic methods has the potential to refi ne existing crops and provide incremental improvements. These methods also have the potential to introduce radical and highly signifi cant improvements to crops by increasing photosynthetic effi ciency, reducing the need for nitrogen or other fertilisers and unlocking some of the unrealised potential of crop genomes. The science of crop management and agricultural practice also needs to be given particular emphasis as part of a food security grand challenge. These approaches can address key constraints in existing crop varieties and can be applied widely. Current approaches to maximising production within agricultural systems are unsustainable; new methodologies that utilise all elements of the agricultural system are needed, including better soil management and enhancement and exploitation of populations of benefi cial soil microbes. Agronomy, soil science and agroecology—the relevant sciences—have been neglected in recent years. Past debates about the use of new technologies for agriculture have tended to adopt an either/or approach, emphasising the merits of particular agricultural systems or technological approaches and the downsides of others. This has been seen most obviously with respect to genetically modifi ed (GM) crops, the use of pesticides and the arguments for and against organic modes of production. These debates have failed to acknowledge that there is no technological panacea for the global challenge of sustainable and secure global food production. There will always be trade-offs and local complexities. This report considers both new crop varieties and appropriate agroecological crop and soil management practices and adopts an inclusive approach. No techniques or technologies should be ruled out. Global agriculture demands a diversity of approaches, specific to crops, localities, cultures and other circumstances. Such diversity demands that the breadth of relevant scientific enquiry is equally diverse, and that science needs to be combined with social, economic and political perspectives. In addition to supporting high-quality science, the UK needs to maintain and build its capacity to innovate, in collaboration with international and national research centres. UK scientists and agronomists have in the past played a leading role in disciplines relevant to agriculture, but training in agricultural sciences and related topics has recently suffered from a lack of policy attention and support. Agricultural extension services, connecting farmers with new innovations, have been similarly neglected in the UK and elsewhere. There is a major need to review the support for and provision of extension services, particularly in developing countries. The governance of innovation for agriculture needs to maximise opportunities for increasing production, while at the same time protecting societies, economies and the environment from negative side effects. Regulatory systems need to improve their assessment of benefits. Horizon scanning will ensure proactive consideration of technological options by governments. Assessment of benefi ts, risks and uncertainties should be seen broadly, and should include the wider impacts of new technologies and practices on economies and societies. Public and stakeholder dialogue—with NGOs, scientists and farmers in particular—needs to be a part of all governance frameworks.
Resumo:
Harmonic analysis on configuration spaces is used in order to extend explicit expressions for the images of creation, annihilation, and second quantization operators in L2-spaces with respect to Poisson point processes to a set of functions larger than the space obtained by directly using chaos expansion. This permits, in particular, to derive an explicit expression for the generator of the second quantization of a sub-Markovian contraction semigroup on a set of functions which forms a core of the generator.
Resumo:
Recent studies using comprehensive middle atmosphere models predict a strengthening of the Brewer-Dobson circulation in response to climate change. To gain confidence in the realism of this result it is important to quantify and understand the contributions from the different components of stratospheric wave drag that cause this increase. Such an analysis is performed here using three 150-yr transient simulations from the Canadian Middle Atmosphere Model (CMAM), a Chemistry-Climate Model that simulates climate change and ozone depletion and recovery. Resolved wave drag and parameterized orographic gravity wave drag account for 60% and 40%, respectively, of the long-term trend in annual mean net upward mass flux at 70 hPa, with planetary waves accounting for 60% of the resolved wave drag trend. Synoptic wave drag has the strongest impact in northern winter, where it accounts for nearly as much of the upward mass flux trend as planetary wave drag. Owing to differences in the latitudinal structure of the wave drag changes, the relative contribution of resolved and parameterized wave drag to the tropical upward mass flux trend over any particular latitude range is highly sensitive to the range of latitudes considered. An examination of the spatial structure of the climate change response reveals no straightforward connection between the low-latitude and high-latitude changes: while the model results show an increase in Arctic downwelling in winter, they also show a decrease in Antarctic downwelling in spring. Both changes are attributed to changes in the flux of stationary planetary wave activity into the stratosphere.
Resumo:
Purpose: Malawi’s current extension policy supports pluralism and advocates responsiveness to farmer demand. We investigate whether smallholder farmers’ experience supports the assumption that access to multiple service providers leads to extension and advisory services that respond to the needs of farmers. Design/methodology/approach: Within a case study approach, two villages were purposively selected for in-depth qualitative analysis of available services and farmers’ experiences. Focus group discussions were held separately with male and female farmers in each village, followed by semi-structured interviews with 12 key informants selected through snowball sampling. Transcripts were analysed by themes and summaries of themes were made from cross case analysis. Findings: Farmers appreciate having access to a variety of sources of technical advice and enterprise specific technology. However, most service providers continue to dominate and dictate what they will offer. Market access remains a challenge, as providers still emphasize pushing a particular technology to increase farm productivity rather than addressing farmers’ expressed needs. Although farmers work in groups, providers do not seek to strengthen these to enable active interaction and to link them to input and produce markets. This limits farmers’ capacity to continue with innovations after service providers pull out. Poor coordination between providers limits exploitation of potential synergies amongst actors. Practical implications: Services providers can adapt their approach to engage farmers in discussion of their needs and work collaboratively to address them. At a system level, institutions that have a coordination function can play a more dynamic role in brokering interaction between providers and farmers to ensure coverage and responsiveness. Originality/value: The study provides a new farmer perspective on the implementation of extension reforms.
Resumo:
Although it may be wholly inappropriate to generalize, the most important resource available to a subsistence household is the total amount of time that its members have available to spend in productive enterprises. In this context, services that minimize the time that it takes to perform productive activities are valuable to the household. Consequently the household is willing to relinquish quantities of other resources in exchange for quantities of the time-saving service. These simple observations motivate a search for the values that subsistence households place on time-saving services. This search is especially important when it is realized that extension services promote productivity, enhance the surplus-generating potential of the household and can, as a consequence, promote immersion into markets that are currently constrained by thinness and instability. In this capacity, extension visitation has the potential to overcome one of the principal impediments to economic development, namely lack of density of market participation. In this article, we consider this issue in the context of a rich data set on milk-market participation by small-holder dairy producers in the Ethiopian highlands.
Resumo:
Recent concerns over the valuation process in collective leasehold enfranchisement and lease extension cases have culminated in new legislation. To underpin this, the Government (Department of Environment Transport and the Regions (DETR)) commissioned new research, which examined whether the valuation of the freehold in such cases could be simplified through the prescription of either yield or marriage value/relativity. This paper, which is based on that research, examines whether it is possible or desirable to prescribe such factors in the valuation process. Market, settlement and Local Valuation Tribunal (LVT) decisions are analysed, and the basis of 'relativity charts' used in practice is critically examined. Ultimately the imperfect nature of the market in freehold investment sales and leasehold vacant possession sales means that recommendations must rest on an analysis of LVT data. New relativity curves are developed from this data and used in conjunction with an alternative approach to valuation yields (based on other investment assets). However, the paper concludes that although the prescription of yields and relativity is possible, it is not fully defensible because of problems in determining risk premia; that the evidential basis for relativity consists of LVT decisions; and that a formula approach would tend to 'lead' the market as a whole.
Resumo:
An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008) who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM) and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS) and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998), is used in several other models we provide some description of the problem and how it was fixed.
Resumo:
Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as a complementary method of estimating rainfall through examples of successful operational application.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.