37 resultados para environmental management strategies
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.
Resumo:
Soluble reactive phosphorus (SRP) plays a key role in eutrophication, a global problem decreasing habitat quality and in-stream biodiversity. Mitigation strategies are required to prevent SRP fluxes from exceeding critical levels, and must be robust in the face of potential changes in climate, land use and a myriad of other influences. To establish the longevity of these strategies it is therefore crucial to consider the sensitivity of catchments to multiple future stressors. This study evaluates how the water quality and hydrology of a major river system in the UK (the River Thames) respond to alterations in climate, land use and water resource allocations, and investigates how these changes impact the relative performance of management strategies over an 80-year period. In the River Thames, the relative contributions of SRP from diffuse and point sources vary seasonally. Diffuse sources of SRP from agriculture dominate during periods of high runoff, and point sources during low flow periods. SRP concentrations rose under any future scenario which either increased a) surface runoff or b) the area of cultivated land. Under these conditions, SRP was sourced from agriculture, and the most effective single mitigation measures were those which addressed diffuse SRP sources. Conversely, where future scenarios reduced flow e.g. during winters of reservoir construction, the significance of point source inputs increased, and mitigation measures addressing these issues became more effective. In catchments with multiple point and diffuse sources of SRP, an all-encompassing effective mitigation approach is difficult to achieve with a single strategy. In order to attain maximum efficiency, multiple strategies might therefore be employed at different times and locations, to target the variable nature of dominant SRP sources and pathways.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.
Resumo:
This paper highlights some communicative and institutional challenges to using ensemble prediction systems (EPS) in operational flood forecasting, warning, and civil protection. Focusing in particular on the Swedish experience, as part of the PREVIEW FP6 project, of applying EPS to operational flood forecasting, the paper draws on a wider set of site visits, interviews, and participant observation with flood forecasting centres and civil protection authorities (CPAs) in Sweden and 15 other European states to reflect on the comparative success of Sweden in enabling CPAs to make operational use of EPS for flood risk management. From that experience, the paper identifies four broader lessons for other countries interested in developing the operational capacity to make, communicate, and use EPS for flood forecasting and civil protection. We conclude that effective training and clear communication of EPS, while clearly necessary, are by no means sufficient to ensure effective use of EPS. Attention must also be given to overcoming the institutional obstacles to their use and to identifying operational choices for which EPS is seen to add value rather than uncertainty to operational decision making by CPAs.
Resumo:
Sustainable Intensification (SI) of agriculture has recently received widespread political attention, in both the UK and internationally. The concept recognises the need to simultaneously raise yields, increase input use efficiency and reduce the negative environmental impacts of farming systems to secure future food production and to sustainably use the limited resources for agriculture. The objective of this paper is to outline a policy-making tool to assess SI at a farm level. Based on the method introduced by Kuosmanen and Kortelainen (2005), we use an adapted Data Envelopment Analysis (DEA) to consider the substitution possibilities between economic value and environmental pressures generated by farming systems in an aggregated index of Eco-Efficiency. Farm level data, specifically General Cropping Farms (GCFs) from the East Anglian River Basin Catchment (EARBC), UK were used as the basis for this analysis. The assignment of weights to environmental pressures through linear programming techniques, when optimising the relative Eco-Efficiency score, allows the identification of appropriate production technologies and practices (integrating pest management, conservation farming, precision agriculture, etc.) for each farm and therefore indicates specific improvements that can be undertaken towards SI. Results are used to suggest strategies for the integration of farming practices and environmental policies in the framework of SI of agriculture. Paths for improving the index of Eco-Efficiency and therefore reducing environmental pressures are also outlined.
Resumo:
1. Agri-environment schemes remain a controversial approach to reversing biodiversity losses, partly because the drivers of variation in outcomes are poorly understood. In particular, there is a lack of studies that consider both social and ecological factors. 2. We analysed variation across 48 farms in the quality and biodiversity outcomes of agri-environmental habitats designed to provide pollen and nectar for bumblebees and butterflies or winter seed for birds. We used interviews and ecological surveys to gather data on farmer experience and understanding of agri-environment schemes, and local and landscape environmental factors. 3. Multimodel inference indicated social factors had a strong impact on outcomes and that farmer experiential learning was a key process. The quality of the created habitat was affected positively by the farmer’s previous experience in environmental management. The farmer’s confidence in their ability to carry out the required management was negatively related to the provision of floral resources. Farmers with more wildlife-friendly motivations tended to produce more floral resources, but fewer seed resources. 4. Bird, bumblebee and butterfly biodiversity responses were strongly affected by the quantity of seed or floral resources. Shelter enhanced biodiversity directly, increased floral resources and decreased seed yield. Seasonal weather patterns had large effects on both measures. Surprisingly, larger species pools and amounts of semi-natural habitat in the surrounding landscape had negative effects on biodiversity, which may indicate use by fauna of alternative foraging resources. 5. Synthesis and application. This is the first study to show a direct role of farmer social variables on the success of agri-environment schemes in supporting farmland biodiversity. It suggests that farmers are not simply implementing agri-environment options, but are learning and improving outcomes by doing so. Better engagement with farmers and working with farmers who have a history of environmental management may therefore enhance success. The importance of a number of environmental factors may explain why agri-environment outcomes are variable, and suggests some – such as the weather – cannot be controlled. Others, such as shelter, could be incorporated into agri-environment prescriptions. The role of landscape factors remains complex and currently eludes simple conclusions about large-scale targeting of schemes.
Resumo:
This thesis is an empirical-based study of the European Union’s Emissions Trading Scheme (EU ETS) and its implications in terms of corporate environmental and financial performance. The novelty of this study includes the extended scope of the data coverage, as most previous studies have examined only the power sector. The use of verified emissions data of ETS-regulated firms as the environmental compliance measure and as the potential differentiating criteria that concern the valuation of EU ETS-exposed firms in the stock market is also an original aspect of this study. The study begins in Chapter 2 by introducing the background information on the emission trading system (ETS), which focuses on (i) the adoption of ETS as an environmental management instrument and (ii) the adoption of ETS by the European Union as one of its central climate policies. Chapter 3 surveys four databases that provide carbon emissions data in order to determine the most suitable source of the data to be used in the later empirical chapters. The first empirical chapter, which is also Chapter 4 of this thesis, investigates the determinants of the emissions compliance performance of the EU ETS-exposed firms through constructing the best possible performance ratio from verified emissions data and self-configuring models for a panel regression analysis. Chapter 5 examines the impacts on the EU ETS-exposed firms in terms of their equity valuation with customised portfolios and multi-factor market models. The research design takes into account the emissions allowance (EUA) price as an additional factor, as it has the most direct association with the EU ETS to control for the exposure. The final empirical Chapter 6 takes the investigation one step further, by specifically testing the degree of ETS exposure facing different sectors with sector-based portfolios and an extended multi-factor market model. The findings from the emissions performance ratio analysis show that the business model of firms significantly influences emissions compliance, as the capital intensity has a positive association with the increasing emissions-to-emissions cap ratio. Furthermore, different sectors show different degrees of sensitivity towards the determining factors. The production factor influences the performance ratio of the Utilities sector, but not the Energy or Materials sectors. The results show that the capital intensity has a more profound influence on the utilities sector than on the materials sector. With regard to the financial performance impact, ETS-exposed firms as aggregate portfolios experienced a substantial underperformance during the 2001–2004 period, but not in the operating period of 2005–2011. The results of the sector-based portfolios show again the differentiating effect of the EU ETS on sectors, as one sector is priced indifferently against its benchmark, three sectors see a constant underperformance, and three sectors have altered outcomes.