43 resultados para dynamic panel data.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper uses a panel data-fixed effect approach and data collected from Chinese public manufacturing firms between 1999 and 2011 to investigate the impacts of business life cycle stages on capital structure. We find that cash flow patterns capture more information on business life cycle stages than firm age and have a stronger impact on capital structure decision-making. We also find that the adjustment speed of capital structure varies significantly across life cycle stages and that non-sequential transitions over life cycle stages play an important role in the determination of capital structure. Our study indicates that it is important for policy-makers to ensure that products and financial markets are well-balanced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – This paper aims to make a comparison, different from existing literature solely focusing on voluntary earnings forecasts and ex post earnings surprise, between the effects of mandatory earnings surprise warnings and voluntary information disclosure issued by management teams on financial analysts in terms of the number of followings and the accuracy of earnings forecasts. Design/methodology/approach – This paper uses panel data analysis with fixed effects on data collected from Chinese public firms between 2006 and 2010. It uses an exogenous regulation enforcement to minimise the endogeneity problem. Findings – This paper finds that financial analysts are less likely to follow firms which mandatorily issue earnings surprise warnings ex ante than those voluntarily issue earnings forecasts. Moreover, ex post, they issue less accurate and more dispersed forecasts on former firms. The results support Brown et al.’s (2009) finding in the USA and suggest that the earnings surprise warnings affect information asymmetries. Practical implications – This paper justifies the mandatory earnings surprise warnings policy issued by Chinese Securities Regulatory Commission in 2006. Originality/value – Mandatory earnings surprise is a unique practical regulation for publicly listed firms in China. This paper, for the first time, provides empirical evaluation on the effectiveness of a mandatory information disclosure policy in China. Consistent with existing literature on information disclosure by public firms in other countries, this paper finds that, in China, voluntary information disclosure captures more private information than mandatory information disclosure on corporate earnings ability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While a growing literature has analyzed the effects of parental migration on the educational outcomes of children left behind, this study is the first to highlight the importance of sibling interactions in such a context. Using panel data from the RUMiC Survey, we find that sibling influence on school performance is stronger among left- behind children. Hence, parental migration seems to trigger changes in familial roles and sibling effects among children. However, it is primarily older sisters who exhibit a positive influence on their younger siblings. We corroborate our results by performing a series of tests to mitigate endogeneity issues. The results from the analysis suggest that sibling effects in migrant households might be a mechanism shaping children’s outcomes and success and that adjustments within the family left behind have the potential to generate benefits – or reduce hardships – in response to parental migration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What explains the cross-national variation in inflation rates in developed countries? Previous literature has emphasised the role of ideas and institutions, and to a lesser extent interest groups, while leaving the role of electoral politics comparatively unexplored. This paper seeks to redress this neglect by focusing on one case where electoral politics matters for inflation: the share of the population above 65 years old in a country. I argue that countries with a larger share of elderly have lower inflation because older people are both more inflation averse and politically powerful, forcing governments to pursue lower inflation. I test my argument in three steps. First, logistic regression analysis of survey data confirms older people are more inflation averse. Second, panel data regression analysis of party manifesto data reveals that European countries with more old people have more economically orthodox political parties. Third, time series cross-section regression analyses demonstrate that the share of the elderly is negatively correlated with inflation in both a sample of 21 advanced OECD economies and a larger sample of 175 countries. Ageing may therefore push governments to adopt a low inflation regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following the 1997 crisis, banking sector reforms in Asia have been characterised by the emphasis on prudential regulation, associated with increased financial liberalisation. Using a panel data set of commercial banks from eight major Asian economies over the period 2001-2010, this study explores how the coexistence of liberalisation and prudential regulation affects banks’ cost characteristics. Given the presence of heterogeneity of technologies across countries, we use a stochastic frontier approach followed by the estimation of a deterministic meta-frontier to provide ‘true’ estimates of bank cost efficiency measures. Our results show that the liberalization of bank interest rates and the increase in foreign banks' presence have had a positive and significant impact on technological progress and cost efficiency. On the other hand, we find that prudential regulation might adversely affect bank cost performance. When designing an optimal regulatory framework, policy makers should combine policies which aim to foster financial stability without hindering financial intermediation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan–rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than 5 min apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of data reconciliation techniques can considerably reduce the inaccuracy of process data due to measurement errors. This in turn results in improved control system performance and process knowledge. Dynamic data reconciliation techniques are applied to a model-based predictive control scheme. It is shown through simulations on a chemical reactor system that the overall performance of the model-based predictive controller is enhanced considerably when data reconciliation is applied. The dynamic data reconciliation techniques used include a combined strategy for the simultaneous identification of outliers and systematic bias.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a method for dynamic data reconciliation of nonlinear systems that are simulated using the sequential modular approach, and where individual modules are represented by a class of differential algebraic equations. The estimation technique consists of a bank of extended Kalman filters that are integrated with the modules. The paper reports a study based on experimental data obtained from a pilot scale mixing process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper the implementation of dynamic data reconciliation techniques for sequential modular models is described. The paper is organised as follows. First, an introduction to dynamic data reconciliation is given. Then, the online use of rigorous process models is introduced. The sequential modular approach to dynamic simulation is briefly discussed followed by a short review of the extended Kalman filter. The second section describes how the modules are implemented. A simulation case study and its results are also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exascale systems are the next frontier in high-performance computing and are expected to deliver a performance of the order of 10^18 operations per second using massive multicore processors. Very large- and extreme-scale parallel systems pose critical algorithmic challenges, especially related to concurrency, locality and the need to avoid global communication patterns. This work investigates a novel protocol for dynamic group communication that can be used to remove the global communication requirement and to reduce the communication cost in parallel formulations of iterative data mining algorithms. The protocol is used to provide a communication-efficient parallel formulation of the k-means algorithm for cluster analysis. The approach is based on a collective communication operation for dynamic groups of processes and exploits non-uniform data distributions. Non-uniform data distributions can be either found in real-world distributed applications or induced by means of multidimensional binary search trees. The analysis of the proposed dynamic group communication protocol has shown that it does not introduce significant communication overhead. The parallel clustering algorithm has also been extended to accommodate an approximation error, which allows a further reduction of the communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing elements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.