33 resultados para diagonal constrained decorrelation
Resumo:
In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.
Resumo:
Periocular recognition has recently become an active topic in biometrics. Typically it uses 2D image data of the periocular region. This paper is the first description of combining 3D shape structure with 2D texture. A simple and effective technique using iterative closest point (ICP) was applied for 3D periocular region matching. It proved its strength for relatively unconstrained eye region capture, and does not require any training. Local binary patterns (LBP) were applied for 2D image based periocular matching. The two modalities were combined at the score-level. This approach was evaluated using the Bosphorus 3D face database, which contains large variations in facial expressions, head poses and occlusions. The rank-1 accuracy achieved from the 3D data (80%) was better than that for 2D (58%), and the best accuracy (83%) was achieved by fusing the two types of data. This suggests that significant improvements to periocular recognition systems could be achieved using the 3D structure information that is now available from small and inexpensive sensors.
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.