51 resultados para cryo-transmission electron microscopy
Resumo:
Experiments were performed to investigate the evolution of structure and morphology of the network in polymer-stabilised liquid crystals. In situ optical microscopy revealed that the morphology was significantly altered by extraction of the LC host, while scanning electron microscopy showed that the network morphology was also dependent on the polymerisation conditions and closely related to the depletion of monomer, as monitored by high performance liquid chromatography. Transmission electron microscopy allowed observation of internal structure, resolving microstructure on the order of 0. 1 μm.
Resumo:
The development of global orientation and morphological features in linear polyethylene crystallizing from a sheared melt are studied using in-situ time-resolving wide angle X-ray scattering (WAXS) and ex-situ transmission electron microscopy. It is found that samples subjected to a shear rate above a critical value of ~1s-1 result in macroscopically oriented structures in the crystallized sample. This critical shear rate appears to be independent of the differences in molecular weight distribution of the samples studied although the morphologies which develop are sensitive to quite small differences in molecular weight distributions. The presence of shish kebabs in the morphology is shown to differ markedly according to variations in the upper molecular weight fraction of the molecular weight distribution, even though the resulting global orientation does not. The WAXS also reveals that areas which evidence no row nucleated structures still realize high degrees of molecular orientation. It is proposed that the formation of shish kebab or lamellar morphologies in these samples is dependent on the critical density of contiguous elongated crystallization nuclei rather than any specific global criteria.
Resumo:
The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.
Resumo:
Microporous carbons are important in a wide variety of applications, ranging from pollution control to supercapacitors, yet their structure at the molecular level is poorly understood. Over the years, many structural models have been put forward, but none have been entirely satisfactory in explaining the properties of the carbons. The discovery of fullerenes and fullerene-related structures such as carbon nanotubes gave us a new perspective on the structure of solid carbon, and in 1997 it was suggested that microporous carbon may have a structure related to that of the fullerenes. Recently, evidence in support of such a structure has been obtained using aberration-corrected transmission electron microscopy, electron energy loss spectroscopy and other techniques. This article describes the development of ideas about the structure of microporous carbon, and reviews the experimental evidence for a fullerene-related structure. Theoretical models of the structural evolution of microporous carbon are summarised, and the use of fullerene-like models to predict the adsorptive properties of microporous carbons are reviewed.
Resumo:
A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.
Resumo:
A chiral bisurea-based superhydrogelator that is capable of forming supramolecular hydrogels at concentrations as low as 0.2 mm is reported. This soft material has been characterized by thermal studies, rheology, X-ray diffraction analysis, transmission electron microscopy (TEM), and by various spectroscopic techniques (electronic and vibrational circular dichroism and by FTIR and Raman spectroscopy). The expression of chirality on the molecular and supramolecular levels has been studied and a clear amplification of its chirality into the achiral analogue has been observed. Furthermore, thermal analysis showed that the hydroACHTUNGTRENUNGgel- ACHTUNGTRENUNGation of compound 1 has a high response to temperature, which corresponds to an enthalpy-driven self-assembly process. These particular thermal characteristics make these materials easy to handle for soft-application technologies
Resumo:
Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli 086:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli 086:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type I and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.
Resumo:
In this work, the microbiological and physicochemical differences of three types of low fat set yoghurts were studied, as well as the changes taking place during storage at 4 °C for 28 days. The first yoghurt was produced with yoghurt starters and exopolysaccharide (EPS) producing Bifidobacterium longum subsp. infantis CCUG 52486 (CCUGY), the second with yoghurt starters and Bifidobacterium infantis NCIMB 702205 (NCIMBY) and the third with just yoghurt starters (control yoghurt). No significant differences were observed in terms of cell concentrations; for all three yoghurts, similar final cell concentrations were obtained for the yoghurt starter cultures (~7.5 log cfu g−1) and the Bifidobacterium strains (~7.8 log cfu g−1). Both Bifidobacterium survived well during storage, as in both cases the cell viability decreased by less than 0.5 log cfu g−1after 28 days of storage. A decrease in pH followed by an increase in lactic acid was observed during storage for all three yoghurts, which was mostly attributed to the activity of the yoghurt starter cultures. The two yoghurts with the EPS producing Bifidobacterium strains exhibited lower syneresis than the control yoghurt. The lowest was shown by CCUGY, which also exhibited the highest storage modulus and firmness, and a well defined porous web-like structure in cryo-SEM. Examination of the micro-structure of the yoghurts using cryo-scanning electron microscopy (cryo-SEM) indicated that the above observations were due to the interaction between the EPS and the milk proteins. Overall, the results indicated that the EPS producing Bifidobacterium longum subsp. infantis CCUG 52486 is the most promising strain, and can be used with yoghurt starter cultures to manufacture low fat set yoghurt with probiotic activities and at the same time enhanced physicochemical and rheological properties.
Resumo:
The surfactant-like peptide (Ala)6(Arg) is found to self-assemble into 3 nm-thick sheets in aqueous solution. Scanning transmission electron microscopy measurements of mass per unit area indicate a layer structure based on antiparallel dimers. At higher concentration the sheets wrap into unprecedented ultrathin helical ribbon and nanotube architectures.
Resumo:
The formation of three-dimensional shell-like structures with bilayer graphene walls is described. The structures are produced by the passage of an electric current through graphite in an arc-discharge apparatus. High resolution transmission electron microscopy is used to characterize the carbon, and provides evidence that the structures are three-dimensional rather than flat. A striking feature of the material is that it contains bilayer nanotubes seamlessly joined to larger shell-like regions. The possible growth mechanism of the carbon is discussed, and potential applications considered.
Resumo:
The self-assembly in aqueous solution of the alanine-rich peptide A12R2 containing twelve alanine residues and two arginine residues has been investigated. This oligomeric peptide was synthesized via NCA-polymerization methods. The surfactant-like peptide is found via FTIR to form antiparallel dimers which aggregate into twisted fibrils, as revealed by cryogenic-transmission electron microscopy. The fibril substructure is probed via detailed X-ray scattering experiments, and are uniquely comprised of twisted tapes only 5 nm wide, set by the width of the antiparallel A12R2 dimers. The packing of the alanine residues leads to distinct “b-sheet” spacings compared to those for amyloid-forming peptides. For this peptide, b-sheet structure coexists with some a-helical content. These ultrafine amyloid fibrils present arginine at high density on their surfaces, and this may lead to applications in nanobiotechnology.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Resumo:
The self-assembly in aqueous solution of three lipopeptides obtained from Bacillus subtilis has been investigated. The lipopeptides surfactin, plipastatin and mycosubtilin contain distinct cyclic peptide headgroups as well as differences in alkyl chain length, branching and chain length distribution. Cryogenic transmission electron microscopy and X-ray scattering reveal that surfactin and plipastatin aggregate into 2 nm-radius spherical micelles, whereas in complete contrast mycosubtilin self-assembles into extended nanotapes based on bilayer ordering of the lipopeptides. Circular dichroism and FTIR spectroscopy indicate the presence of turn structures in the cyclic peptide headgroup. The unexpected distinct mode of self-assembly of mycosubtilin compared to the other two lipopeptides is ascribed to differences in the surfactant packing parameter. This in turn is due to specific features of the conformation of the peptide headgroup and alkyl chain branching.
Resumo:
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.
Resumo:
A new form of carbon is described, which consists of hollow, three-dimensional shells bounded by bilayer graphene. The new carbon is produced very simply, by passing a current through graphite rods in a commercial arc-evaporation unit. Characterisation of the carbon using high resolution transmission electron microscopy is described, and the possible formation mechanism discussed.