77 resultados para crofton weed (Eupatorium adenophorum)
Resumo:
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences(continuous cotton, cotton-sugar beet rotation,and continuous tobacco) and herbicide treatments with inter-row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus-galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus)and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus-galli, S. nigrum, and johnsongras(Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter-row hand hoeing,whereas E. crus-galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter-row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre-sowing and pre-emergence herbicide treatments in cotton and pre-transplant in tobacco integrated with inter-row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter-row cultivation; tools of great importance in integrated weed management systems. Keywords: cropping sequence, herbicide, integrated weed management, inter-row cultivation,tillage.
Resumo:
Enhanced understanding of soil disturbance effects on weed seedling recruitment will help guide improved management approaches. Field experiments were conducted at 16 site-years at 10 research farms across Europe and North America to (i) quantify superficial soil disturbance (SSD) effects on Chenopodium album emergence and (ii) clarify adaptive emergence behaviour in frequently disturbed environments. Each site-year contained factorial combinations of two seed populations (local and common, with the common population studied at all site-years) and six SSD timings [0, 50, 100, 150, 200 day-degrees (d°C, base temperature 3°C) after first emergence from undisturbed soil]. Analytical units in this study were emergence flushes. Flush magnitudes (maximum weekly emergence per count flush) and flush frequencies (flushes year 1) were compared between disturbed and undisturbed seedbanks. One year after burial, SSD promoted seedling emergence relative to undisturbed seedbanks by increasing flush magnitude rather than increasing flush frequency. Two years after burial, SSD promoted emergence through increased flush magnitude and flush frequency. The promotional effects of SSD on emergence were strongest within 500 d°C following SSD; however, low levels of SSDinduced emergence were detected as late as 3000 d°C following SSD. Accordingly, stale seedbed practices that eliminate weed seedlings should occur within 500 d°C of disturbance, because few seedlings emerge after this time. However, implementation of stale seedbed practices will probably cause slight increases in weed population densities throughout the year. Compared with the common population, local populations exhibited reduced variance in total emergence measured within sites and across SSD treatments, suggesting that C. album adaptation to local pedo-climatic conditions involves increased consistency in SSD-induced emergence.
Resumo:
As a prelude to leaf-specific weed control using droplets targeted by a robotic weeder, amounts of herbicide required to control individual weed seedlings were estimated. Roundup Biactive was applied at doses equivalent to 1/128th to four times the recommended rate in addition to undiluted Roundup and water controls. Based on the mean ground cover of the seedlings, the recommended dose (1.5 l ha 1) was estimated and droplets were applied to individual plants by micropipette. All treatments contained 1% AS 500 SL, Agromix (adjuvant). Three weeks after application dry weights (DW) of each seedling was recorded. DW reductions of 50% were achieved in the five species tested at less than the recommended rate whereas only in one species was a 90% reduction obtained at that rate. In Galium aparine for example, 19.3 μg of glyphosate reduced DW per plant by 90% compared to the recommended dose of 8.4 μg.
Resumo:
With the increasing pressure on crop production from the evolution of herbicide resistance, farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment their weed control. These include measures to increase the competitiveness of the crop canopy such as increased sowing rate and the use of more competitive cultivars. While there are data on the relative impact of these non-chemical weed control methods assessed in isolation, there is uncertainty about their combined contribution, which may be hindering their adoption. In this article, the INTERCOM simulation model of crop / weed competition was used to examine the combined impact of crop density, sowing date and cultivar choice on the outcomes of competition between wheat (Triticum aestivum) and Alopecurus myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-Western Europe and the primary target for IWM in the UK because it has evolved resistance to a range of herbicides. The model was parameterised for two cultivars with contrasting competitive ability, and simulations run across 10 years at different crop densities and two sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely work in a complementary fashion, allowing enhanced competitive ability against weeds when used in combination. However, the relative benefit of choosing a more competitive cultivar decreases at later sowing dates and higher crop densities. Modelling approaches could be further employed to examine the effectiveness of IWM, reducing the need for more expensive and cumbersome long-term in situ experimentation.
Resumo:
Near isogenic lines (NILs) varying for genes for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c + Ppd-D1a, Rht-D1c, Rht12) were compared at one field site but within contrasting ('organic' vs. 'conventional') rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b + Rht-D1b, Rht-D1b + Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) x Renesansa (Rht-8c + Ppd-D1a)]. Assessments included laboratory tests of germination and coleoptile length, and various field measurements of crop growth between emergence and pre jointing [plant population, tillering, leaf length, ground cover (GC), interception of photosynthetically active radiation (PAR), crop dry matter (DM) and nitrogen accumulation (N), far red: red reflectance ratio (FR:R), crop height, and weed dry matter]. All of the dwarfing alleles except Rht12 in the Mercia background and Rht8c in the DHs were associated with reduced coleoptile length. Most of the dwarfing alleles (depending on background) reduced seed viability. Severe dwarfing alleles (Rht-B1c, Rht-D1c and Rht12) were routinely associated with fewer plant numbers and reduced early crop growth (GC, PAR, DM, N, FR:R), and in 1 year, increased weed DM. In the Mercia background and the DHs the semi-dwarfing allele Rht-D1b was also sometimes associated with reductions in early crop growth; no such negative effects were associated with the marker for Rht8c. When significant interactions between cropping system and genotype did occur it was because differences between lines were more exaggerated in the organic system than in the conventional system. Ppd-D1a was associated positively with plant numbers surviving the winter and early crop growth (GC, FR:R, DM, N, PAR, height), and was the most significant locus in a QTL analysis. We conclude that, within these environmental and system contexts, genes moderating development are likely to be more important in influencing early resource capture than using Rht8c as an alternative semi-dwarfing gene to Rht-D1b.
Resumo:
Plant communities of set-aside agricultural land in a European project were managed in order to enhance plant succession towards weed-resistant, mid-successional grassland. Here, we ask if the management of a plant community affects the earthworm community. Field experiments were established in four countries, the Netherlands, Sweden, the UK, and the Czech Republic. High (15 plant species) and low diversity (four plant species) seed mixtures were sown as management practice, with natural colonization as control treatment in a randomized block design. The response of the earthworrns to the management was studied after three summers since establishment of the sites. Samples were also taken from plots with continued agricultural practices included in the experimental design and from a site with a late successional plant community representing the target plant community. The numbers and biomass of individuals were higher in the set-aside plots than in the agricultural treatment in two countries out of four. The numbers of individuals at one site (The Netherlands) was higher in the naturally colonized plots than in the sowing treatments, otherwise there were no differences between the treatments. Species diversity was lower in the agricultural plots in one country. The species composition had changed from the initial community of the agricultural field, but was still different from a late successional target community. The worm biomass was positively related to legume biomass in Sweden and to grass biomass in the UK. (C) 2005 Elsevier SAS. All rights reserved.
Resumo:
The emergence behaviour of weed species in relation to cultural and meteorological events was studied. Dissimilarities between populations in dormancy and germination ecology, between-year maturation conditions and seed quality and burial site climate all contribute to potentially unpredictable variability. Therefore, a weed emergence data set was produced for weed seeds of Stellaria media and Chenopodium album matured and collected from three populations (Italy, Sweden and UK). The seeds were collected in two consecutive seasons (1999 and 2000) and subsequently buried in the autumn of the same year of maturation in eight contrasting climatic locations throughout Europe and the USA. The experiment sought to explore and explain differences between the three populations in their emergence behaviour. Evidence was demonstrated of synchrony in the timing of the emergence of different populations of a species at a given burial site. The relative magnitudes of emergence from the three populations at a given burial site in a given year were generally similar across all the burial sites in the study. The resulting data set was also used to construct a simple weed emergence model, which was tested for its application to the range of different burial environments and populations. The study demonstrated the possibility of using a simple thermal time-based model to describe part of the emergence behaviour across different burial sites, seed populations and seasons, and a simple winter chilling relationship to adjust for the magnitude of the flush of emergence at a given burial site. This study demonstrates the possibility of developing robust generic models for simple predictions of emergence timing across populations.
Resumo:
The UK Biodiversity Action Plan has identified the creation of lowland heathland as an important objective. Heathland restoration studies have identified soil pH, elevated soil nutrients and large weed seed banks as major problems in the restoration of heathland vegetation on ex-arable land. Heathland vegetation is usually found on nutrient-poor acidic soils. Creating acidic soil conditions on ex-arable sites thus may produce a suitable environment for the establishment of heath vegetation. Soil acidification by the addition of sulphur has been shown to reduce the soil pH and the availability of nutrients in arable soils. A series of experiments was established to investigate the effects of soil acidification using sulphur on the establishment of Calluna vulgaris and the development of weed vegetation. The application of sulphur at 0.24 kg m(-2) to an arable soil was found to increase the survival rate of C. vulgaris cuttings planted in it. The mechanism of increased C. vulgaris survival appeared to be by sulphur application significantly reducing the cover of arable weeds arising from the soil seed bank. Higher rates of sulphur application (0.36 and 0.48 kg m(-2)) resulted in the death of many C. vidgaris plants. However C. vulgaris seedlings were able to establish successfully on these ex-arable soils within 1824 months following the addition of these levels of sulphur. The application of sulphur appears to offer a practical solution to heathland creation on ex-arable land. However, it may be necessary to provide an interval of between 18 and 24 months between the application of sulphur and the addition of C. vulgaris plants or seeds for the successful establishment of heathland vegetation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Weeds are major constraints on crop production, yet as part of the primary producers within farming systems, they may be important components of the agroecosystem. Using published literature, the role of weeds in arable systems for other above-ground trophic levels are examined. In the UK, there is evidence that weed flora have changed over the past century, with some species declining in abundance, whereas others have increased. There is also some evidence for a decline in the size of arable weed seedbanks. Some of these changes reflect improved agricultural efficiency, changes to more winter-sown crops in arable rotations and the use of more broad-spectrum herbicide combinations. Interrogation of a database of records of phytophagous insects associated with plant species in the UK reveals that many arable weed species support a high diversity of insect species. Reductions in abundances of host plants may affect associated insects and other taxa. A number of insect groups and farmland birds have shown marked population declines over the past 30 years. Correlational studies indicate that many of these declines are associated with changes in agricultural practices. Certainly reductions in food availability in winter and for nestling birds in spring are implicated in the declines of several bird species, notably the grey partridge, Perdix perdix . Thus weeds have a role within agroecosystems in supporting biodiversity more generally. An understanding of weed competitivity and the importance of weeds for insects and birds may allow the identification of the most important weed species. This may form the first step in balancing the needs for weed control with the requirements for biodiversity and more sustainable production methods.
Resumo:
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).