288 resultados para convection anomaly


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixture model techniques are applied to a daily index of monsoon convection from ERA‐40 reanalysis to show regime behavior. The result is the existence of two significant regimes showing preferred locations of convection within the Asia/Western‐North Pacific domain, with some resemblance to active‐break events over India. Simple trend analysis over 1958–2001 shows that the first regime has become less frequent while the second becomes much more dominant. Both undergo a change in structure contributing to the total OLR trend over the ERA‐40 period. Stratifying the data according to a large‐scale dynamical index of monsoon interannual variability, we show the regime occurrence to be strongly perturbed by the seasonal condition, in agreement with conceptual ideas. This technique could be used to further examine predictability issues relating the seasonal mean and intraseasonal monsoon variability or to explore changes in monsoon behavior in centennial‐scale model integrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of stratospheric air into the troposphere within deep convection was investigated using the Met Office Unified Model version 6.1. Three cases were simulated in which convective systems formed over the UK in the summer of 2005. For each of these three cases, simulations were performed on a grid having 4 km horizontal grid spacing in which the convection was parameterized and on a grid having 1 km horizontal grid spacing, which permitted explicit representation of the largest energy-containing scales of deep convection. Cross-tropopause transport was diagnosed using passive tracers that were initialized above the dynamically defined tropopause (2 potential vorticity unit surface) with a mixing ratio of 1. Although the synoptic-scale environment and triggering mechanisms varied between the cases, the total simulated transport was similar in all three cases. The total stratosphere-to-troposphere transport over the lifetime of the convective systems ranged from 25 to 100 kg/m2 across the simulated convective systems and resolutions, which corresponds to ∼5–20% of the total mass located within a stratospheric column extending 2 km above the tropopause. In all simulations, the transport into the lower troposphere (defined as below 3.5 km elevation) accounted for ∼1% of the total transport across the tropopause. In the 4 km runs most of the transport was due to parameterized convection, whereas in the 1 km runs the transport was due to explicitly resolved convection. The largest difference between the simulations with different resolutions occurred in the one case of midlevel convection considered, in which the total transport in the 1 km grid spacing simulation with explicit convection was 4 times that in the 4 km grid spacing simulation with parameterized convection. Although the total cross-tropopause transport was similar, stratospheric tracer was deposited more deeply to near-surface elevations in the convection-parameterizing simulations than in convection-permitting simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, a number of studies have focused on the influence of sea surface temperature (SST) on global and regional rainfall variability, with the majority of these focusing on certain ocean basins e.g. the Pacific, North Atlantic and Indian Ocean. In contrast, relatively less work has been done on the influence of the central South Atlantic, particularly in relation to rainfall over southern Africa. Previous work by the authors, using reanalysis data and general circulation model (GCM) experiments, has suggested that cold SST anomalies in the central southern Atlantic Ocean are linked to an increase in rainfall extremes across southern Africa. In this paper we present results from idealised regional climate model (RCM) experiments forced with both positive and negative SST anomalies in the southern Atlantic Ocean. These experiments reveal an unexpected response of rainfall over southern Africa. In particular it was found that SST anomalies of opposite sign can cause similar rainfall responses in the model experiments, with isolated increases in rainfall over central southern Africa as well as a large region of drying over the Mozambique Channel. The purpose of this paper is to highlight this finding and explore explanations for the behaviour of the climate model. It is suggested that the observed changes in rainfall might result from the redistribution of energy (associated with upper level changes to Rossby waves) or, of more concern, model error, and therefore the paper concludes that the results of idealised regional climate models forced with SST anomalies should be viewed cautiously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to increasing atmospheric con- centrations of greenhouse gases, the rate of time- dependent climate change is determined jointly by the strength of climate feedbacks and the e�ciency of pro- cesses which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere± ocean general circulation model (AOGCM) in experi- ments with CO2 held constant (control) and increasing at 1% per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind- driven circulation and di�uses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling±di�usion ocean models, the global average upward di�usive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less a�ected. Reduction of deep water produc- tion at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling in¯uence. The impor- tant role of di�usion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the initiation of precipitating deep convection in an ensemble of convection-resolving mesoscale models. Results of eight different model runs from five non-hydrostatic models are compared for a case of the Convective and Orographically-induced Precipitation Study (COPS). An isolated convective cell initiated east of the Black Forest crest in southwest Germany, although convective available potential energy was only moderate and convective inhibition was high. Measurements revealed that, due to the absence of synoptic forcing, convection was initiated by local processes related to the orography. In particular, the lifting by low-level convergence in the planetary boundary layer is assumed to be the dominant process on that day. The models used different configurations as well as different initial and boundary conditions. By comparing the different model performance with each other and with measurements, the processes which need to be well represented to initiate convection at the right place and time are discussed. Besides an accurate specification of the thermodynamic and kinematic fields, the results highlight the role of boundary-layer convergence features for quantitative precipitation forecasts in mountainous terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wagner and Graf (2010) derive a population evolution equation for an ensemble of convective plumes, an analogue with the Lotka–Volterra equation, from the energy equations for convective plumes provided by Arakawa and Schubert (1974). Although their proposal is interesting, as the present note shows, there are some problems with their derivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud-resolving numerical simulations of airflow over a diurnally heated mountain ridge are conducted to explore the mechanisms and sensitivities of convective initiation under high pressure conditions. The simulations are based on a well-observed convection event from the Convective and Orographically Induced Precipitation Study (COPS) during summer 2007, where an isolated afternoon thunderstorm developed over the Black Forest mountains of central Europe, but they are idealized to facilitate understanding and reduce computational expense. In the conditionally unstable but strongly inhibited flow under consideration, sharp horizontal convergence over the mountain acts to locally weaken the inhibition and moisten the dry midtroposphere through shallow cumulus detrainment. The onset of deep convection occurs not through the deep ascent of a single updraft but rather through a rapid succession of thermals that are vented through the mountain convergence zone into the deepening cloud mass. Emerging thermals rise through the saturated wakes of their predecessors, which diminishes the suppressive effects of entrainment and allows for rapid glaciation above the freezing level as supercooled cloud drops rime onto preexisting ice particles. These effects strongly enhance the midlevel cloud buoyancy and enable rapid ascent to the tropopause. The existence and vigor of the convection is highly sensitive to small changes in background wind speed U0, which controls the strength of the mountain convergence and the ability of midlevel moisture to accumulate above the mountain. Whereas vigorous deep convection develops for U0 = 0 m s−1, deep convection is completely eliminated for U0 = 3 m s−1. Although deep convection is able to develop under intermediate winds (U0 = 1.5 m s−1), its formation is highly sensitive to small-amplitude perturbations in the initial flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convective-scale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2005, the ECMWF held a workshop on stochastic parameterisation, at which the convection was seen as being a key issue. That much is clear from the working group reports and particularly the statement from working group 1 that “it is clear that a stochastic convection scheme is desirable”. The present note aims to consider our current status in comparison with some of the issues raised and hopes expressed in that working group report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful quantitative precipitation forecasts under convectively unstable conditions depend on the ability of the model to capture the location, timing and intensity of convection. Ensemble forecasts of two mesoscale convective outbreaks over the UK are examined with a view to understanding the nature and extent of their predictability. In addition to a control forecast, twelve ensemble members are run for each case with the same boundary conditions but with perturbations added to the boundary layer. The intention is to introduce perturbations of appropriate magnitude and scale so that the large-scale behaviour of the simulations is not changed. In one case, convection is in statistical equilibrium with the large-scale flow. This places a constraint on the total precipitation, but the location and intensity of individual storms varied. In contrast, the other case was characterised by a large-scale capping inversion. As a result, the location of individual storms was fixed, but their intensities and the total precipitation varied strongly. The ensemble shows case-to-case variability in the nature of predictability of convection in a mesoscale model, and provides additional useful information for quantitative precipitation forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present workshop constitutes the 5th in the annual series on “Concepts for Convective Parameterizations in Large-Scale Models”. The purpose of the workshop series has been to discuss the fundamental theoretical issues of convection parameterization with a small number of European scientists. The workshop series has been funded by European Cooperation in the Field of Scientific and Technical Research (COST) Action ES0905. The theme of the workshop for the year 2012 was decided from a main conclusion of the previous workshop, which focused on the convective organization problem, seeking a means for implementing such effects into convection parameterizations (Yano et al. 2012). As it turned out, in order to discuss this implementation issue in any concrete manner, we have first to know very well the bells and whistles of convection parameterizations. This was the purpose of the 5th workshop. The title of the workshop is rather metaphorically tagged as “Bulk or Spectrum?”, because this is a typical decision we have to face at the outset of any parameterization development. The following report discusses selected issues of bells and whistles addressed during the meeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper presents a simple theory for the transformation of non-precipitating, shallow convection into precipitating, deep convective clouds. In order to make the pertinent point a much idealized system is considered, consisting only of shallow and deep convection without large–scale forcing. The transformation is described by an explicit coupling between these two types of convection. Shallow convection moistens and cools the atmosphere, whereas deep convection dries and warms, leading to destabilization and stabilization respectively. Consequently, in their own stand–alone modes, shallow convection perpetually grows, whereas deep convection simply damps: the former never reaches equilibrium, and the latter is never spontaneously generated. Coupling the modes together is the only way to reconcile these undesirable separate tendencies so that the convective system as a whole can remain in a stable periodic state under this idealized setting. Such coupling is a key missing element in current global atmospheric models. The energy–cycle description as originally formulated by Arakawa and Schubert, and presented herein is suitable for direct implementation into models using a mass–flux parameterization, and would alleviate the current problems with the representation of these two types of convection in numerical models. The present theory also provides a pertinent framework for analyzing large–eddy simulations and cloud–resolving modelling.