83 resultados para configuration of social networks
Resumo:
The identification of criminal networks is not a routine exploratory process within the current practice of the law enforcement authorities; rather it is triggered by specific evidence of criminal activity being investigated. A network is identified when a criminal comes to notice and any associates who could also be potentially implicated would need to be identified if only to be eliminated from the enquiries as suspects or witnesses as well as to prevent and/or detect crime. However, an identified network may not be the one causing most harm in a given area.. This paper identifies a methodology to identify all of the criminal networks that are present within a Law Enforcement Area, and, prioritises those that are causing most harm to the community. Each crime is allocated a score based on its crime type and how recently the crime was committed; the network score, which can be used as decision support to help prioritise it for law enforcement purposes, is the sum of the individual crime scores.
Resumo:
In this paper, we propose to study a class of neural networks with recent-history distributed delays. A sufficient condition is derived for the global exponential periodicity of the proposed neural networks, which has the advantage that it assumes neither the differentiability nor monotonicity of the activation function of each neuron nor the symmetry of the feedback matrix or delayed feedback matrix. Our criterion is shown to be valid by applying it to an illustrative system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Can human social cognitive processes and social motives be grasped by the methods of experimental economics? Experimental studies of strategic cognition and social preferences contribute to our understanding of the social aspects of economic decisions making. Yet, papers in this issue argue that the social aspects of decision-making introduce several difficulties for interpreting the results of economic experiments. In particular, the laboratory is itself a social context, and in many respects a rather distinctive one, which raises questions of external validity.
Resumo:
Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.
Resumo:
This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.