67 resultados para complexity metrics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent excavations at Pre-Pottery Neolithic A (PPNA) WF16 in southern Jordan have revealed remarkable evidence of architectural developments in the early Neolithic. This sheds light on both special purpose structures and “domestic” settlement, allowing fresh insights into the development of increasingly sedentary communities and the social systems they supported. The development of sedentary communities is a central part of the Neolithic process in Southwest Asia. Architecture and ideas of homes and households have been important to the debate, although there has also been considerable discussion on the role of communal buildings and the organization of early sedentarizing communities since the discovery of the tower at Jericho. Recently, the focus has been on either northern Levantine PPNA sites, such as Jerf el Ahmar, or the emergence of ritual buildings in the Pre-Pottery Neolithic B of the southern Levant. Much of the debate revolves around a division between what is interpreted as domestic space, contrasted with “special purpose” buildings. Our recent evidence allows a fresh examination of the nature of early Neolithic communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metrics are often used to compare the climate impacts of emissions from various sources, sectors or nations. These are usually based on global-mean input, and so there is the potential that important information on smaller scales is lost. Assuming a non-linear dependence of the climate impact on local surface temperature change, we explore the loss of information about regional variability that results from using global-mean input in the specific case of heterogeneous changes in ozone, methane and aerosol concentrations resulting from emissions from road traffic, aviation and shipping. Results from equilibrium simulations with two general circulation models are used. An alternative metric for capturing the regional climate impacts is investigated. We find that the application of a metric that is first calculated locally and then averaged globally captures a more complete and informative signal of climate impact than one that uses global-mean input. The loss of information when heterogeneity is ignored is largest in the case of aviation. Further investigation of the spatial distribution of temperature change indicates that although the pattern of temperature response does not closely match the pattern of the forcing, the forcing pattern still influences the response pattern on a hemispheric scale. When the short-lived transport forcing is superimposed on present-day anthropogenic CO2 forcing, the heterogeneity in the temperature response to CO2 dominates. This suggests that the importance of including regional climate impacts in global metrics depends on whether small sectors are considered in isolation or as part of the overall climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-gas approaches to climate change policies require a metric establishing ‘equivalences’ among emissions of various species. Climate scientists and economists have proposed four kinds of such metrics and debated their relative merits. We present a unifying framework that clarifies the relationships among them. We show, as have previous authors, that the global warming potential (GWP), used in international law to compare emissions of greenhouse gases, is a special case of the global damage potential (GDP), assuming (1) a finite time horizon, (2) a zero discount rate, (3) constant atmospheric concentrations, and (4) impacts that are proportional to radiative forcing. Both the GWP and GDP follow naturally from a cost–benefit framing of the climate change issue. We show that the global temperature change potential (GTP) is a special case of the global cost potential (GCP), assuming a (slight) fall in the global temperature after the target is reached. We show how the four metrics should be generalized if there are intertemporal spillovers in abatement costs, distinguishing between private (e.g., capital stock turnover) and public (e.g., induced technological change) spillovers. Both the GTP and GCP follow naturally from a cost-effectiveness framing of the climate change issue. We also argue that if (1) damages are zero below a threshold and (2) infinitely large above a threshold, then cost-effectiveness analysis and cost–benefit analysis lead to identical results. Therefore, the GCP is a special case of the GDP. The UN Framework Convention on Climate Change uses the GWP, a simplified cost–benefit concept. The UNFCCC is framed around the ultimate goal of stabilizing greenhouse gas concentrations. Once a stabilization target has been agreed under the convention, implementation is clearly a cost-effectiveness problem. It would therefore be more consistent to use the GCP or its simplification, the GTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the response to regional and latitudinal changes in aircraft NOx emissions using several climate metrics (radiative forcing (RF), Global Warming Potential (GWP), Global Temperature change Potential (GTP)). Global chemistry transport model integrations were performed with sustained perturbations in regional aircraft and aircraft-like NOx emissions. The RF due to the resulting ozone and methane changes is then calculated. We investigate the impact of emission changes for specific geographical regions (approximating to USA, Europe, India and China) and cruise altitude emission changes in discrete latitude bands covering both hemispheres. We find that lower latitude emission changes (per Tg N) cause ozone and methane RFs that are about a factor of 6 larger than those from higher latitude emission changes. The net RF is positive for all experiments. The meridional extent of the RF is larger for low latitude emissions. GWPs for all emission changes are positive, with tropical emissions having the largest values; the sign of the GTP depends on the choice of time horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the effect of ozone damage to vegetation as caused by anthropogenic emissions of ozone precursor species and quantify it in terms of its impact on terrestrial carbon stores. A simple climate model is then used to assess the expected changes in global surface temperature from the resulting perturbations to atmospheric concentrations of carbon dioxide, methane, and ozone. The concept of global temperature change potential (GTP) metric, which relates the global average surface temperature change induced by the pulse emission of a species to that induced by a unit mass of carbon dioxide, is used to characterize the impact of changes in emissions of ozone precursors on surface temperature as a function of time. For NOx emissions, the longer-timescale methane perturbation is of the opposite sign to the perturbations in ozone and carbon dioxide, so NOx emissions are warming in the short term, but cooling in the long term. For volatile organic compound (VOC), CO, and methane emissions, all the terms are warming for an increase in emissions. The GTPs for the 20 year time horizon are strong functions of emission location, with a large component of the variability owing to the different vegetation responses on different continents. At this time horizon, the induced change in the carbon cycle is the largest single contributor to the GTP metric for NOx and VOC emissions. For NOx emissions, we estimate a GTP20 of −9 (cooling) to +24 (warming) depending on assumptions of the sensitivity of vegetation types to ozone damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines selected methodological insights that complexity theory might provide for planning. In particular, it focuses on the concept of fractals and, through this concept, how ways of organising policy domains across scales might have particular causal impacts. The aim of this article is therefore twofold: (a) to position complexity theory within social science through a ‘generalised discourse’, thereby orienting it to particular ontological and epistemological biases and (b) to reintroduce a comparatively new concept – fractals – from complexity theory in a way that is consistent with the ontological and epistemological biases argued for, and expand on the contribution that this might make to planning. Complexity theory is theoretically positioned as a neo-systems theory with reasons elaborated. Fractal systems from complexity theory are systems that exhibit self-similarity across scales. This concept (as previously introduced by the author in ‘Fractal spaces in planning and governance’) is further developed in this article to (a) illustrate the ontological and epistemological claims for complexity theory, and to (b) draw attention to ways of organising policy systems across scales to emphasise certain characteristics of the systems – certain distinctions. These distinctions when repeated across scales reinforce associated processes/values/end goals resulting in particular policy outcomes. Finally, empirical insights from two case studies in two different policy domains are presented and compared to illustrate the workings of fractals in planning practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article argues that a native-speaker baseline is a neglected dimension of studies into second language (L2) performance. If we investigate how learners perform language tasks, we should distinguish what performance features are due to their processing an L2 and which are due to their performing a particular task. Having defined what we mean by “native speaker,” we present the background to a research study into task features on nonnative task performance, designed to include native-speaker data as a baseline for interpreting nonnative-speaker performance. The nonnative results, published in this journal (Tavakoli & Foster, 2008) are recapitulated and then the native-speaker results are presented and discussed in the light of them. The study is guided by the assumption that limited attentional resources impact on L2 performance and explores how narrative design features—namely complexity of storyline and tightness of narrative structure— affect complexity, fluency, accuracy, and lexical diversity in language. The results show that both native and nonnative speakers are prompted by storyline complexity to use more subordinated language, but narrative structure had different effects on native and nonnative fluency. The learners, who were based in either London or Tehran, did not differ in their performance when compared to each other, except in lexical diversity, where the learners in London were close to native-speaker levels. The implications of the results for the applicability of Levelt’s model of speaking to an L2 are discussed, as is the potential for further L2 research using native speakers as a baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing models to predict the effects of social and economic change on agricultural landscapes is an important challenge. Model development often involves making decisions about which aspects of the system require detailed description and which are reasonably insensitive to the assumptions. However, important components of the system are often left out because parameter estimates are unavailable. In particular, measurements of the relative influence of different objectives, such as risk, environmental management, on farmer decision making, have proven difficult to quantify. We describe a model that can make predictions of land use on the basis of profit alone or with the inclusion of explicit additional objectives. Importantly, our model is specifically designed to use parameter estimates for additional objectives obtained via farmer interviews. By statistically comparing the outputs of this model with a large farm-level land-use data set, we show that cropping patterns in the United Kingdom contain a significant contribution from farmer’s preference for objectives other than profit. In particular, we found that risk aversion had an effect on the accuracy of model predictions, whereas preference for a particular number of crops grown was less important. While nonprofit objectives have frequently been identified as factors in farmers’ decision making, our results take this analysis further by demonstrating the relationship between these preferences and actual cropping patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reviews the use of complexity theory in planning theory using the theory of metaphors for theory transfer and theory construction. The introduction to the article presents the author's positioning of planning theory. The first section thereafter provides a general background of the trajectory of development of complexity theory and discusses the rationale of using the theory of metaphors for evaluating the use of complexity theory in planning. The second section introduces the workings of metaphors in general and theory-constructing metaphors in particular, drawing out an understanding of how to proceed with an evaluative approach towards an analysis of the use of complexity theory in planning. The third section presents two case studies – reviews of two articles – to illustrate how the framework might be employed. It then discusses the implications of the evaluation for the question ‘can complexity theory contribute to planning?’ The concluding section discusses the employment of the ‘theory of metaphors’ for evaluating theory transfer and draws out normative suggestions for engaging in theory transfer using the metaphorical route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.