41 resultados para charge-transfer complex
Resumo:
The influence of substituents and media polarity on the photoinducedE→Z geometrical isomerisation of the stilbene, azobenzene and N-benzylideneaniline chromophores has been compared and assessed. The efficiency of the process in all three systems is markedly dependent on the presence and characteristics of electron-donor and electron-acceptor substituents at the 4- and 4′-positions. The results are discussed in terms of relaxation of the E-excited singlet state. In the absence of a nitro substituent, relaxation to the S1 orthogonal state competes effectively with non-productive intramolecular electron transfer; in the presence of a nitro substituent, the T1 orthogonal state is formed from inter-system crossing. For systems with a 4-nitro and a 4′-electron-donor substituent, access to the triplet state is inhibited by polar solvents promoting formation of the inactive charge-transfer state from the S1 state, and no isomerisation is observed. Similar effects are observed in both solution and polymer films. Such variations in behaviour have important implications for the utilisation of the chromophores in nonlinear optical phenomena including photorefractivity.
Electrochromic and electrofluorochromic properties of a new boron dipyrromethene–ferrocene conjugate
Resumo:
A new boron dipyrromethene–ferrocene (BODIPY–Fc) conjugate with pentafluorophenyl as the meso substituent and two Fc termini was synthesized and its spectroscopic and electrochemical features were analyzed. An intramolecular charge transfer from the donor Fc to the acceptor BODIPY has been predicted by theory and confirmed experimentally, leading to efficient fluorescence quenching when the dyad is in the neutral state. Fluorescence can be triggered by oxidizing both ferrocenyl units either chemically or electrochemically. Eventually, a fully reversible fluorescence switch is evidenced by coupling TIRF microscopy with electrolysis in an electrochemical cell.
Resumo:
Novel bis(azidophenyl)phosphole sulfide building block 8 has been developed to give access to a plethora of phosphole-containing π-conjugated systems in a simple synthetic step. This was explored for the reaction of the two azido moieties with phenyl-, pyridyl- and thienylacetylenes, to give bis(aryltriazolyl)-extended π-systems, having either the phosphole sulfide (9) or the phosphole (10) group as central ring. These conjugated frameworks exhibit intriguing photophysical and electrochemical properties that vary with the nature of the aromatic end-group. The λ3-phospholes 10 display blue fluorescence (λem = 460–469 nm) with high quan-tum yield (ΦF = 0.134–0.309). The radical anion of pyridylsubstituted phosphole sulfide 9b was observed with UV/Vis spectroscopy. TDDFT calculations on the extended π-systems showed some variation in the shape of the HOMOs, which was found to have an effect on the extent of charge transfer, depending on the aromatic end-group. Some fine-tuning of the emission maxima was observed, albeit subtle, showing a decrease in conjugation in the order thienyl � phenyl � pyridyl. These results show that variations in the distal ends of such π-systems have a subtle but significant effect on photophysical properties.
Resumo:
An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(II) (3), Pt(II) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(II) and Pt(II) center reveals C-H center dot center dot center dot Pd and C-H center dot center dot center dot Pt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with sigma(rt) values similar to 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.
Resumo:
Crystal engineering principles were used to design three new co-crystals of paracetamol. A variety of potential cocrystal formers were initially identified from a search of the Cambridge Structural Database for molecules with complementary hydrogen-bond forming functionalities. Subsequent screening by powder X-ray diffraction of the products of the reaction of this library of molecules with paracetamol led to the discovery of new binary crystalline phases of paracetamol with trans-1,4- diaminocyclohexane (1); trans-1,4-di(4-pyridyl)ethylene (2); and 1,2-bis(4-pyridyl)ethane (3). The co-crystals were characterized by IR spectroscopy, differential scanning calorimetry, and 1H NMR spectroscopy. Single crystal X-ray structure analysis reveals that in all three co-crystals the co-crystal formers (CCF) are hydrogen bonded to the paracetamol molecules through O−H···N interactions. In co-crystals (1) and (2) the CCFs are interleaved between the chains of paracetamol molecules, while in co-crystal (3) there is an additional N−H···N hydrogen bond between the two components. A hierarchy of hydrogen bond formation is observed in which the best donor in the system, the phenolic O−H group of paracetamol, is preferentially hydrogen bonded to the best acceptor, the basic nitrogen atom of the co-crystal former. The geometric aspects of the hydrogen bonds in co-crystals 1−3 are discussed in terms of their electrostatic and charge-transfer components.
Resumo:
Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.
Resumo:
This paper uses the linear modulation technique to study red IRSL emission of potassium feldspars. Sub-samples were subjected to various pre-treatment and measurement conditions in an attempt to understand the relevant mechanisms of charge transfer. The linear modulation curves fitted most successfully to a sum of three first order components and we present supporting empirical evidence for the presence of three separate signal components. Additionally, the form of the red emission was observed to closely resemble the UV emission, implying the same donor charge concentrations may supply different recombination centres (assuming emission wavelength depends on centre type).
Resumo:
The optically stimulated luminescence (OSL) signal within quartz may be enhanced by thermal transfer during pre-heating. This may occur via a thermally induced charge transfer from low temperature traps to the OSL traps. Thermal transfer may affect both natural and artificially irradiated samples. The effect, as empirically measured via recuperation tests, is typically observed to be negligible for old samples (<1% of natural signal). However, thermal transfer remains a major concern in the dating of young samples as thermal decay and transfers of geologically unstable traps (typically in the TL range 160–280°C) may be incomplete. Upon pre-heating such a sample might undergo thermal transfer to the dating trap and result in a De overestimate. As a result, there has been a tendency for workers to adopt less rigorous pre-heats for young samples. We have investigated the pre-heat dependence of 23 young quartz samples from various depositional environments using pre-heats between 170°C and 300°C, employing the single aliquot regeneration (SAR) protocol. SAR De's were also calculated for 25 additional young quartz samples of different depositional environments and compared with previous multiple aliquot additive dose (MAAD) data. Results demonstrate no significant De dependence upon pre-heat temperatures. A close correspondence between MAAD data and the current SAR data for the samples tested is also illustrated.
Resumo:
Protons and electrons are being exploited in different natural charge transfer processes. Both types of charge carriers could be, therefore, responsible for charge transport in biomimetic self-assembled peptide nanostructures. The relative contribution of each type of charge carrier is studied in the present work for fi brils self-assembled from amyloid- β derived peptide molecules, in which two non-natural thiophene-based amino acids are included. It is shown that under low humidity conditions both electrons and protons contribute to the conduction, with current ratio of 1:2 respectively, while at higher relative humidity proton transport dominates the conductance. This hybrid conduction behavior leads to a bimodal exponential dependence of the conductance on the relative humidity. Furthermore, in both cases the conductance is shown to be affected by the peptide folding state under the entire relative humidity range. This unique hybrid conductivity behavior makes self-assembled peptide nanostructures powerful building blocks for the construction of electric devices that could use either or both types of charge carriers for their function.
Weak intermolecular interactions in an ionically bound molecular adsorbate: cyclopentadienyl=Cu(111)
Resumo:
The dissociative adsorption of cyclopentadiene (C5H6) on Cu(111) yields a cyclopentadienyl (Cp) species with strongly anionic characteristics. The Cp potential energy surface and frictional coupling to the substrate are determined from measurements of dynamics of the molecule together with density functional calculations. The molecule is shown to occupy degenerate threefold adsorption sites and molecular motion is characterized by a low diffusional energy barrier of 40 +/- 3 meV with strong frictional dissipation. Repulsive dipole-dipole interactions are not detected despite charge transfer from substrate to adsorbate.
Resumo:
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.