92 resultados para centrifugal distortion
Resumo:
The microwave spectra of CHD2CN and CHD2NC have been measured from 18 to 40 GHz; about 20 type A and 30 type C transitions have been observed for each molecule. These have been fitted to a Hamiltonian using 3 rotational constants, and 5 quartic and 4 sextic distortion constants, in the IrS reduction of Watson [in “Vibrational spectra and structure” Vol. 6 (1977)]; the standard error of the fit is 26 kHz. For methyl cyanide the 5 quartic distortion constants have been used to further refine the recent harmonic force field of Duncan et al. [J. Mol. Spectrosc. 69, 123 (1978)], but the changes are small. Finally, for both molecules, the harmonic force field has been used to determine zero point average moments of inertia Iz from the ground state rotational constants for many isotopic species, and these have been used to determine an rz structure. The results are compared with rs structure calculations.
Resumo:
The mathematical difficulties which can arise in the force constant refinement procedure for calculating force constants and normal co-ordinates are described and discussed. The method has been applied to the methyl fluoride molecule, using an electronic computer. The best values of the twelve force constants in the most general harmonic potential field were obtained to fit twenty-two independently observed experimental data, these being the six vibration frequencies, three Coriolis zeta constants and two centrifugal stretching constants DJ and DJK, for both CH3F and CD3F. The calculations have been repeated both with and without anharmonicity corrections to the vibration frequencies. All the experimental data were weighted according to the reliability of the observations, and the corresponding standard errors and correlation coefficients of the force constants have been deduced. The final force constants are discussed briefly, and compared with previous treatments, particularly with a recent Urey-Bradley treatment for this molecule.
Resumo:
A method is discussed for imposing any desired constraint on the force field obtained in a force constant refinement calculation. The application of this method to force constant refinement calculations for the methyl halide molecules is reported. All available data on the vibration frequencies, Coriolis interaction constants and centrifugal stretching constants of CH3X and CD3X molecules were used in the refinements, but despite this apparent abundance of data it was found that constraints were necessary in order to obtain a unique solution to the force field. The results of unconstrained calculations, and of three different constrained calculations, are reported in this paper. The constrained models reported are a Urey—Bradley force field, a modified valence force field, and a constraint based on orbital-following bond-hybridization arguments developed in the following paper. The results are discussed, and compared with previous results for these molecules. The third of the above models is found to reproduce the observed data better than either of the first two, and additional reasons are given for preferring this solution to the force field for the methyl halide molecules.
Resumo:
Vibration rotation spectra of HO15 NO and DO15 NO have been measured at a resolution of 0•04 cm-1 to determine the isotopic shifts in the vibrational band origins. These have been used together with recently determined data on the vibrational band origins, Coriolis constants, and centrifugal distorition constants, to determine the harmonic force field of both cis and trans nitrous acid in least squares refinement calculations. The results are discussed in relation to recent ab initio calculations, the inertia defects, and the torsional potential function.
Resumo:
The fundamental vibration-rotational absorption band of hydrogen chloride near 3 45,t has been remeasured using higher resolving power than previously. The wave-lengths of the absorption lines have been determined more precisely, and the isotopic splitting of lines has been completely resolved. The results have provided new and more satisfactory values for the rotational constants Bi, and the centrifugal stretching constants Di, and their relative values for the two isotopic species agree closely with what is to be expected for the difference in mass. The positions of the lines in the pure rotational absorption spectrum have been calculated from the derived data, and agree closely with those recently observed. The bond lengths re for each isotopic species H35C1 and H37C1 is found to be 1-2744A.
Resumo:
Expressions are derived for the Jacobian of the coriolis ζ interaction constants and the centrifugal stretching constants (DJ, DJK, etc.) with respect to the force constants in a vibrating-rotating molecule.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Conventional seemingly unrelated estimation of the almost ideal demand system is shown to lead to small sample bias and distortions in the size of a Wald test for symmetry and homogeneity when the data are co-integrated. A fully modified estimator is developed in an attempt to remedy these problems. It is shown that this estimator reduces the small sample bias but fails to eliminate the size distortion.. Bootstrapping is shown to be ineffective as a method of removing small sample bias in both the conventional and fully modified estimators. Bootstrapping is effective, however, as a method of removing. size distortion and performs equally well in this respect with both estimators.
Resumo:
Background: Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results: The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306) of our global sample of individuals was infected with the plutWBI isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWBI is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion: The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWBI infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may reflect a bottleneck during their recent introduction to this region.
A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria
Resumo:
Diploid Fragaria provide a potential model for genomic studies in the Rosaceae. To develop a genetic linkage map of diploid Fragaria, we scored 78 markers (68 microsatellites, one sequence-characterised amplified region, six gene-specific markers and three morphological traits) in an interspecific F2 population of 94 plants generated from a cross of F.vesca f. semperflorens × F. nubicola. Co-segregation analysis arranged 76 markers into seven discrete linkage groups covering 448 cM, with linkage group sizes ranging from 100.3 cM to 22.9 cM. Marker coverage was generally good; however some clustering of markers was observed on six of the seven linkage groups. Segregation distortion was observed at a high proportion of loci (54%), which could reflect the interspecific nature of the progeny and, in some cases, the self-incompatibility of F. nubicola. Such distortion may also account for some of the marker clustering observed in the map. One of the morphological markers, pale-green leaf (pg) has not previously been mapped in Fragaria and was located to the mid-point of linkage group VI. The transferable nature of the markers used in this study means that the map will be ideal for use as a framework for additional marker incorporation aimed at enhancing and resolving map coverage of the diploid Fragaria genome. The map also provides a sound basis for linkage map transfer to the cultivated octoploid strawberry.
Resumo:
Yellow (CuCN)(2)[(CuCN)(2)(mu-4,4'-bpy)], formed in the hydrothermal reaction of CuCN with 4,4'-bipyridine at 453 K, contains two types of infinite CuCN chains. One set of CuCN chains is linked by 4,4'-bpy ligands to form almost flat sheets of composition [(CuCN)(2)(mu-4,4'-bpy)]. Holes in these sheets are aligned to allow pairs of approximately linear, infinite -(CuCN)- chains to thread through them. The closest interatomic approach between copper atoms in the threading chains and host sheets (similar to2.74 Angstrom) does not appear to represent a significant covalent bond as it leads to only a small distortion of the -(CuCN)- chains from linearity The relationship of this material to the previously determined structures of the host [(CuCN)(2)(mu-4,4'-bpy)] sheets and (CuCN)(3)[(CuCN)(2)(mu-4,4'-bPY)](2), in which these sheets are threaded by single -(CuCN)- chains, is discussed.
Resumo:
A double minimum six-dimensional Potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D-2h) B-4 isomer in its (1)A(g) electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D-4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm-1 for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B-4 it is the B-1g (D-4h mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of B-11(4) are calculated to be (splittings in parentheses): G(O) = 2352(22) cm(-1), v(1)(A(1g)) - 1136(24) cm(-1,) v(2)(B-1g)=209(144) cm(-1) v(3)(B-2g)=1198(19)cm(-1), v(4)(B-2u) = 271(24) cm(-1), and v(5) (E-u) = 1030( 166) cm(-1) (D-4h notation). Their variations in all stable isotoporners were investigated. Due to the presence of strong anharmonic resonances between the B-1g in-plane distortion and the B-2u, out-of-plane bending modes. the hiaher overtones and combination levels are difficult to assign unequivocally. (C) 2005 American Institute of Physics.
Resumo:
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing
Resumo:
A review is given of the mechanics of cutting, ranging from the slicing of thin floppy offcuts (where there is negligible elasticity and no permanent deformation of the offcut) to the machining of ductile metals (where there is severe permanent distortion of the offcut/chip). Materials scientists employ the former conditions to determine the fracture toughness of ‘soft’ solids such as biological materials and foodstuffs. In contrast, traditional analyses of metalcutting are based on plasticity and friction only, and do not incorporate toughness. The machining theories are inadequate in a number of ways but a recent paper has shown that when ductile work of fracture is included many, if not all, of the shortcomings are removed. Support for the new analysis is given by examination of FEM simulations of metalcutting which reveal that a ‘separation criterion’ has to be employed at the tool tip. Some consideration shows that the separation criteria are versions of void-initiation-growth-and-coalescence models employed in ductile fracture mechanics. The new analysis shows that cutting forces for ductile materials depend upon the fracture toughness as well as plasticity and friction, and reveals a simple way of determining both toughness and flow stress from cutting experiments. Examples are given for a wide range of materials including metals, polymers and wood, and comparison is made with the same properties independently determined using conventional testpieces. Because cutting can be steady state, a new way is presented for simultaneously measuring toughness and flow stress at controlled speeds and strain rates.