99 resultados para cardiac markers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subjects with the metabolic syndrome (MetS) have enhanced oxidative stress and inflammation. Dietary fat quality has been proposed to be implicated in these conditions. We investigated the impact of four diets distinct in fat quantity and quality on 8-iso-PGF2α (a major F2-isoprostane and oxidative stress indicator), 15-keto-13,14-dihydro-PGF2α (15-keto-dihydro-PGF2α, a major PGF2α metabolite and marker of cyclooxygenase-mediated inflammation) and C-reactive protein (CRP). In a 12-week parallel multicentre dietary intervention study (LIPGENE), 417 volunteers with the MetS were randomly assigned to one of the four diets: two high-fat diets (38 % energy (%E)) rich in SFA or MUFA and two low-fat high-complex carbohydrate diets (28 %E) with (LFHCC n-3) or without (LFHCC) 1·24 g/d of very long chain n-3 fatty acid supplementation. Urinary levels of 8-iso-PGF2α and 15-keto-dihydro-PGF2α were determined by RIA and adjusted for urinary creatinine levels. Serum concentration of CRP was measured by ELISA. Neither concentrations of 8-iso-PGF2α and 15-keto-dihydro-PGF2α nor those of CRP differed between diet groups at baseline (P>0·07) or at the end of the study (P>0·44). Also, no differences in changes of the markers were observed between the diet groups (8-iso-PGF2α, P = 0·83; 15-keto-dihydro-PGF2α, P = 0·45; and CRP, P = 0·97). In conclusion, a 12-week dietary fat modification did not affect the investigated markers of oxidative stress and inflammation among subjects with the MetS in the LIPGENE study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear Dbf2-related protein kinases 1 and 2 (NDR1/2) are closely-related AGC family kinases that are strongly conserved through evolution. In mammals, they are activated inter alia by phosphorylation of an hydrophobic domain threonine-residue [NDR1(Thr-444)/NDR2(Thr-442)] by an extrinsic protein kinase followed by autophosphorylation of a catalytic domain serine-residue [NDR1(Ser-281)/NDR2(Ser-282)]. We examined NDR1/2 expression and regulation in primary cultures of neonatal rat cardiac myocytes and in perfused adult rat hearts. In myocytes, transcripts for NDR2, but not NDR1, were induced by the hypertrophic agonist, endothelin-1. NDR1(Thr-444) and NDR2(Thr-442) were rapidly phosphorylated (maximal in 15-30 min) in myocytes exposed to some phosphoprotein Ser-/Thr-phosphatase 1/2 inhibitors (calyculin A, okadaic acid) and, to a lesser extent, by hyperosmotic shock, low concentrations of H(2)O(2), or chelerythrine. In myocytes adenovirally-transduced to express FLAG-NDR2 (which exhibited a mainly-cytoplasmic localisation), the same agents increased FLAG-NDR2 activity as assessed by in vitro protein kinase assays, indicative of FLAG-NDR2(Ser-282/Thr-442) phosphorylation. Calyculin A-induced phosphorylation of NDR1(Thr-444)/NDR2(Thr-442) and activation of FLAG-NDR2 were inhibited by staurosporine, but not by other protein kinase inhibitors tested. In ex vivo rat hearts, NDR1(Thr-444)/NDR2(Thr-442) were phosphorylated in response to ischaemia-reperfusion or calyculin A. From a pathological viewpoint, we conclude that activities of NDR1 and NDR2 are responsive to cytotoxic stresses in heart preparations and this may represent a previously-unidentified response to myocardial ischaemia in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of glycogen synthase kinase 3β (GSK3β) as a consequence of its phosphorylation by protein kinase B/Akt (PKB/Akt) has been implicated in cardiac myocyte hypertrophy in response to endothelin-1 or phenylephrine. We examined the regulation of GSK3α (which we show to constitute a significant proportion of the myocyte GSK3 pool) and GSK3β in cardiac myocytes. Although endothelin increases phosphorylation of GSK3 and decreases its activity, the response is less than that induced by insulin (which does not promote cardiac myocyte hypertrophy). GSK3 phosphorylation induced by endothelin requires signalling through the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and not the PKB/Akt pathway, whereas the reverse is true for insulin. Cardiac myocyte hypertrophy involves changes in morphology, and in gene and protein expression. The potent GSK3 inhibitor 1-azakenpaullone increases myocyte area as a consequence of increased cell length whereas phenylephrine increases both length and width. Azakenpaullone or insulin promotes AP1 transcription factor binding to an AP1 consensus oligonucleotide, but this was significantly less than that induced by endothelin and derived principally from increased binding of JunB protein, the expression of which was increased. Azakenpaullone promotes significant changes in gene expression (assessed by Affymetrix microarrays), but the overall response is less than with endothelin and there is little overlap between the genes identified. Thus, although GSK3 may contribute to cardiac myocyte hypertrophy in some respects (and presumably plays an important role in myocyte metabolism), it does not appear to contribute as significantly to the response induced by endothelin as has been maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delayed peak response of plasma retinyl esters (RE) relative to plasma triacylglycerols (TAG) and apolipoprotein (Apo) B-48 responses following a fat load supplemented with vitamin A raised doubts about the use of vitamin A to label dietary-derived lipids and lipoproteins. The present study compared the use of water-miscible and oil-soluble retinyl palmitate (RP) as markers of dietary-derived lipoproteins in healthy subjects along with the measurements of postprandial plasma TAG and ApoB-48 responses to investigate whether the delayed peak response observed was due to delayed intestinal output of RE from oil-based solutions. Nine healthy female subjects were given a standard test meal containing a dose (112 mg) of RP in either water-miscible or oil-soluble form in random order, on two separate occasions after a 12 h overnight fast. The results showed that the mean plasma RE concentrations reached a peak significantly later than mean plasma TAG and ApoB-48 concentrations when oil-soluble RP was consumed, whereas plasma RE peaked earlier relative to plasma TAG and ApoB-48 responses when water-miscible RP was used. The results suggested a more rapid absorption with a significantly higher and earlier peak response of plasma RE when water-miscible RP was consumed. This was in contrast to the delayed initial appearance and later sustained higher concentrations of plasma RE during the late postprandial period when oil-soluble RP was consumed. The RE response to the water-miscible RP showed better concordance with plasma TAG response than that of oil-soluble RP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIM: The atherogenic potential of dietary derived lipids, chylomicrons (CM) and their remnants (CMr) is now becoming more widely recognised. To investigate factors effecting levels of CM and CMr and their importance in coronary heart disease risk it is essential to use a specific method of quantification. Two studies were carried out to investigate: (i) effects of increased daily intake of long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA), and (ii) effects of increasing meal monounsaturated fatty acid (MUFA) content on the postprandial response of intestinally-derived lipoproteins. The contribution of the intestinally-derived lipoproteins to total lipaemia was assessed by triacylglycerol-rich lipoprotein (TRL) apolipoprotein B-48 (apo B-48) and retinyl ester (RE) concentrations. METHODS AND RESULTS: In a randomised controlled crossover trial (placebo vs LC n-3 PUFA) a mean daily intake of 1.4 g/day of LC n-3 PUFA failed to reduce fasting and postprandial triacylglycerol (TAG) response in 9 healthy male volunteers. Although the pattern and nature of the apo B-48 response was consistent with the TAG response following the two diets, the postprandial RE response differed on the LC n-3 PUFA diet with a lower early RE response and a delayed and more marked increase in RE in the late postprandial period compared with the control diet, but the differences did not reach levels of statistical significance. In the meal study there was no effect of MUFA/SFA content on the total lipaemic response to the meals nor on the contribution of intestinally derived lipoproteins evaluated as TAG, apo B-48 and RE responses in the TRL fraction. In both studies, the RE and apo B-48 measurements provided broadly similar information with respect to lack of effects of dietary or meal fatty acid composition and the presence of single or multiple peak responses. However the apo B-48 and RE measurements differed with respect to the timing of their peak response times, with a delayed RE peak, relalive to apo B-48, of approximately 2-3 hours for the LC n-3 PUFA diet (p = 0.002) study and 1-1.5 hours for the meal MUFA/SFA study. CONCLUSIONS: It was concluded that there are limitations of using RE as a specific CM marker, apo B-48 quantitation was found to be a more appropriate method for CM and CMr quantitation. However it was still considered of value to measure RE as it provided additional information regarding the incorporation of other constituents into the CM particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To study the bioavailability of anthocyanins and the effects of a 20% blackcurrant juice drink on vascular reactivity, plasma antioxidant status and other CVD risk markers. Subjects/Methods: The study was a randomised, cross over, double blind, placebo controlled acute meal study. Twenty healthy volunteers (11 females 9 males) were recruited, and all subjects completed the study. Fasted volunteers consumed a 20% blackcurrant juice drink (250 ml) or a control drink following a low-flavonoid diet for the previous 72 hours. Vascular reactivity was assessed at baseline and 120 mins after juice consumption by Laser Doppler Imaging (LDI). Plasma and urine samples were collected periodically over an 8 hour period for analysis, with a final urine sample collected at 24h. The cross over was performed after a 4-week washout. Results: There were no significant effects of the 20% blackcurrant juice drink on acute measures of vascular reactivity, biomarkers of endothelial function or lipid risk factors. Consumption of the test juice caused increases in plasma vitamin C (P=0.006), and urinary anthocyanins (P<0.001). Delphinidin-3-rutinoside and cyanidin-3-rutinoside were the main anthocyanins excreted in urine with delphinidin-3-glucoside also detected. The yield of anthocyanins in urine was 0.021 ± 0.003% of the dietary intake of delphinidin glycosides and 0.009 ± 0.002 % of the dietary intake of cyanidin glycosides. Conclusions: The juice consumption did not have a significant effect on vascular reactivity. Anthocyanins were present at low concentrations in the urine, and microbial metabolites of flavonoids were detected in plasma after juice consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Myocardial repair following injury in mammals is restricted such that damaged areas are replaced by scar tissue, impairing cardiac function. MRL mice exhibit exceptional regenerative healing in an ear punch wound model. Some myocardial repair with restoration of heart function has also been reported following cryoinjury. Increased cardiomyocyte proliferation and a foetal liver stem cell population were implicated. We investigated molecular mechanisms facilitating myocardial repair in MRL mice to identify potential therapeutic targets in non-regenerative species. Methods Expressions of specific cell-cycle regulators that might account for regeneration (CDKs 1, 2, 4 and 6; cyclins A, E, D1 and B1; p21, p27 and E2F5) were compared by immunoblotting in MRL and control C57BL/6 ventricles during development. Flow cytometry was used to investigate stem cell populations in livers from foetal mice, and infarct sizes were compared in coronary artery-ligated and sham-treated MRL and C57BL/6 adult mice. Key findings No differences in the expressions of cell cycle regulators were observed between the two strains. Expressions of CD34+Sca1+ckit-, CD34+Sca1+ckit+ and CD34+Sca1-ckit+ increased in livers from C57BL/6 vs MRL mice. No differences were observed in infarct sizes, levels of fibrosis, Ki67 staining or cardiac function between MRL and C57BL/6 mice. Conclusions No intrinsic differences were observed in cell cycle control molecules or stem cell populations between MRL and control C57BL mouse hearts. Pathophysiologically relevant ischaemic injury is not repaired more efficiently in MRL myocardium, questioning the use of the MRL mouse as a reliable model for cardiac regeneration in response to pathophysiologically relevant forms of injury.