100 resultados para blur distortion
Resumo:
The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.
Resumo:
The complete general harmonic force field of methyl flouride was recalculated using the most recent literature frequency, Coriolis ζ, and centrifugal distortion data for 12CH3F, 13CH3F, 12CD3F, 12CHD2F and 12CH2DF. The anharmonic corrections applied to the observed frequency data and the adopted molecular geometry are considered to be more realistic than those used hitherto. There is excellent overall agreement between the fitted force constants and the highest quality ab initio force field currently available.
Resumo:
Purpose: Vergence and accommodation studies often use adult participants with experience of vision science. Reports of infant and clinical responses are generally more variable and of lower gain, with the implication that differences lie in immaturity or sub-optimal clinical characteristics but expert/naïve differences are rarely considered or quantified. Methods: Sixteen undergraduates, naïve to vision science, were individually matched by age, visual acuity, refractive error, heterophoria, stereoacuity and near point of accommodation to second- and third-year orthoptics and optometry undergraduates (‘experts’). Accommodation and vergence responses were assessed to targets moving between 33 cm, 50 cm, 1 m and 2 m using a haploscopic device incorporating a PlusoptiX SO4 autorefractor. Disparity, blur and looming cues were separately available or minimised in all combinations. Instruction set was minimal. Results: In all cases, vergence and accommodation response slopes (gain) were steeper and closer to 1.0 in the expert group (p = 0.001), with the largest expert/naïve differences for both vergence and accommodation being for near targets (p = 0.012). For vergence, the differences between expert and naïve response slopes increased with increasingly open-loop targets (linear trend p = 0.025). Although we predicted that proximal cues would drive additional response in the experts, the proximity-only cue was the only condition that showed no statistical effect of experience. Conclusions: Expert observers provide more accurate responses to near target demand than closely matched naïve observers. We suggest that attention, practice, voluntary and proprioceptive effects may enhance responses in experienced participants when compared to a more typical general population. Differences between adult reports and the developmental and clinical literature may partially reflect expert/naïve effects, as well as developmental change. If developmental and clinical studies are to be compared to adult normative data, uninstructed naïve adult data should be used.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Conventional seemingly unrelated estimation of the almost ideal demand system is shown to lead to small sample bias and distortions in the size of a Wald test for symmetry and homogeneity when the data are co-integrated. A fully modified estimator is developed in an attempt to remedy these problems. It is shown that this estimator reduces the small sample bias but fails to eliminate the size distortion.. Bootstrapping is shown to be ineffective as a method of removing small sample bias in both the conventional and fully modified estimators. Bootstrapping is effective, however, as a method of removing. size distortion and performs equally well in this respect with both estimators.
Resumo:
Background: Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results: The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306) of our global sample of individuals was infected with the plutWBI isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWBI is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion: The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWBI infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may reflect a bottleneck during their recent introduction to this region.
A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria
Resumo:
Diploid Fragaria provide a potential model for genomic studies in the Rosaceae. To develop a genetic linkage map of diploid Fragaria, we scored 78 markers (68 microsatellites, one sequence-characterised amplified region, six gene-specific markers and three morphological traits) in an interspecific F2 population of 94 plants generated from a cross of F.vesca f. semperflorens × F. nubicola. Co-segregation analysis arranged 76 markers into seven discrete linkage groups covering 448 cM, with linkage group sizes ranging from 100.3 cM to 22.9 cM. Marker coverage was generally good; however some clustering of markers was observed on six of the seven linkage groups. Segregation distortion was observed at a high proportion of loci (54%), which could reflect the interspecific nature of the progeny and, in some cases, the self-incompatibility of F. nubicola. Such distortion may also account for some of the marker clustering observed in the map. One of the morphological markers, pale-green leaf (pg) has not previously been mapped in Fragaria and was located to the mid-point of linkage group VI. The transferable nature of the markers used in this study means that the map will be ideal for use as a framework for additional marker incorporation aimed at enhancing and resolving map coverage of the diploid Fragaria genome. The map also provides a sound basis for linkage map transfer to the cultivated octoploid strawberry.
Resumo:
Yellow (CuCN)(2)[(CuCN)(2)(mu-4,4'-bpy)], formed in the hydrothermal reaction of CuCN with 4,4'-bipyridine at 453 K, contains two types of infinite CuCN chains. One set of CuCN chains is linked by 4,4'-bpy ligands to form almost flat sheets of composition [(CuCN)(2)(mu-4,4'-bpy)]. Holes in these sheets are aligned to allow pairs of approximately linear, infinite -(CuCN)- chains to thread through them. The closest interatomic approach between copper atoms in the threading chains and host sheets (similar to2.74 Angstrom) does not appear to represent a significant covalent bond as it leads to only a small distortion of the -(CuCN)- chains from linearity The relationship of this material to the previously determined structures of the host [(CuCN)(2)(mu-4,4'-bpy)] sheets and (CuCN)(3)[(CuCN)(2)(mu-4,4'-bPY)](2), in which these sheets are threaded by single -(CuCN)- chains, is discussed.
Resumo:
A double minimum six-dimensional Potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D-2h) B-4 isomer in its (1)A(g) electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D-4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm-1 for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B-4 it is the B-1g (D-4h mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of B-11(4) are calculated to be (splittings in parentheses): G(O) = 2352(22) cm(-1), v(1)(A(1g)) - 1136(24) cm(-1,) v(2)(B-1g)=209(144) cm(-1) v(3)(B-2g)=1198(19)cm(-1), v(4)(B-2u) = 271(24) cm(-1), and v(5) (E-u) = 1030( 166) cm(-1) (D-4h notation). Their variations in all stable isotoporners were investigated. Due to the presence of strong anharmonic resonances between the B-1g in-plane distortion and the B-2u, out-of-plane bending modes. the hiaher overtones and combination levels are difficult to assign unequivocally. (C) 2005 American Institute of Physics.
Resumo:
A review is given of the mechanics of cutting, ranging from the slicing of thin floppy offcuts (where there is negligible elasticity and no permanent deformation of the offcut) to the machining of ductile metals (where there is severe permanent distortion of the offcut/chip). Materials scientists employ the former conditions to determine the fracture toughness of ‘soft’ solids such as biological materials and foodstuffs. In contrast, traditional analyses of metalcutting are based on plasticity and friction only, and do not incorporate toughness. The machining theories are inadequate in a number of ways but a recent paper has shown that when ductile work of fracture is included many, if not all, of the shortcomings are removed. Support for the new analysis is given by examination of FEM simulations of metalcutting which reveal that a ‘separation criterion’ has to be employed at the tool tip. Some consideration shows that the separation criteria are versions of void-initiation-growth-and-coalescence models employed in ductile fracture mechanics. The new analysis shows that cutting forces for ductile materials depend upon the fracture toughness as well as plasticity and friction, and reveals a simple way of determining both toughness and flow stress from cutting experiments. Examples are given for a wide range of materials including metals, polymers and wood, and comparison is made with the same properties independently determined using conventional testpieces. Because cutting can be steady state, a new way is presented for simultaneously measuring toughness and flow stress at controlled speeds and strain rates.
Resumo:
Purpose. Hyperopic retinal defocus (blur) is thought to be a cause of myopia. If the retinal image of an object is not clearly focused, the resulting blur is thought to cause the continuing lengthening of the eyeball during development causing a permanent refractive error. Both lag of accommodation, especially for near targets, and greater variability in the accommodative response, have been suggested as causes of increased hyperopic retinal blur. Previous studies of lag of accommodation show variable findings. In comparison, greater variability in the accommodative response has been demonstrated in adults with late onset myopia but has not been tested in children. This study looked at the lag and variability of accommodation in children with early onset myopia. Methods. Twenty-one myopic and 18 emmetropic children were tested. Dynamic measures of accommodation and pupil size were made using eccentric photorefraction (Power Refractor) while children viewed targets set at three different accommodative demands (0.25, 2, and 4 D). Results. We found no difference in accommodative lag between groups. However, the accommodative response was more variable in the myopes than emmetropes when viewing both the near (4 D) and far (0.25 D) targets. Since pupil size and variability also varied, we analyzed the data to determine whether this could account for the inter-group differences in accommodation variability. Variation in these factors was not found to be sufficient to explain these differences. Changes in the accommodative response variability with target distance were similar to patterns reported previously in adult emmetropes and late onset myopes. Conclusions. Children with early onset myopia demonstrate greater accommodative variability than emmetropic children, and have similar patterns of response to adult late onset myopes. This increased variability could result in an increase in retinal blur for both near and far targets. The role of accommodative variability in the etiology of myopia is discussed.
Resumo:
Purpose. Accommodation can mask hyperopia and reduce the accuracy of non-cycloplegic refraction. It is, therefore, important to minimize accommodation to obtain a measure of hyperopia as accurate as possible. To characterize the parameters required to measure the maximally hyperopic error using photorefraction, we used different target types and distances to determine which target was most likely to maximally relax accommodation and thus more accurately detect hyperopia in an individual. Methods. A PlusoptiX SO4 infra-red photorefractor was mounted in a remote haploscope which presented the targets. All participants were tested with targets at four fixation distances between 0.3 and 2 m containing all combinations of blur, disparity, and proximity/looming cues. Thirty-eight infants (6 to 44 weeks) were studied longitudinally, and 104 children [4 to 15 years (mean 6.4)] and 85 adults, with a range of refractive errors and binocular vision status, were tested once. Cycloplegic refraction data were available for a sub-set of 59 participants spread across the age range. Results. The maximally hyperopic refraction (MHR) found at any time in the session was most frequently found when fixating the most distant targets and those containing disparity and dynamic proximity/looming cues. Presence or absence of blur was less significant, and targets in which only single cues to depth were present were also less likely to produce MHR. MHR correlated closely with cycloplegic refraction (r = 0.93, mean difference 0.07 D, p = n.s., 95% confidence interval +/-<0.25 D) after correction by a calibration factor. Conclusions. Maximum relaxation of accommodation occurred for binocular targets receding into the distance. Proximal and disparity cues aid relaxation of accommodation to a greater extent than blur, and thus non-cycloplegic refraction targets should incorporate these cues. This is especially important in screening contexts with a brief opportunity to test for significant hyperopia. MHR in our laboratory was found to be a reliable estimation of cycloplegic refraction. (Optom Vis Sci 2009;86:1276-1286)
Resumo:
Binocular disparity, blur, and proximal cues drive convergence and accommodation. Disparity is considered to be the main vergence cue and blur the main accommodation cue. We have developed a remote haploscopic photorefractor to measure simultaneous vergence and accommodation objectively in a wide range of participants of all ages while fixating targets at between 0.3 and 2 m. By separating the three main near cues, we can explore their relative weighting in three-, two-, one-, and zero-cue conditions. Disparity can be manipulated by remote occlusion; blur cues manipulated by using either a Gabor patch or a detailed picture target; looming cues by either scaling or not scaling target size with distance. In normal orthophoric, emmetropic, symptom-free, naive visually mature participants, disparity was by far the most significant cue to both vergence and accommodation. Accommodation responses dropped dramatically if disparity was not available. Blur only had a clinically significant effect when disparity was absent. Proximity had very little effect. There was considerable interparticipant variation. We predict that relative weighting of near cue use is likely to vary between clinical groups and present some individual cases as examples. We are using this naturalistic tool to research strabismus, vergence and accommodation development, and emmetropization.
Resumo:
A remote haploscopic photorefractor was used to assess objective binocular vergence and accommodation responses in 157 full-term healthy infants aged 1-6 months while fixating a brightly coloured target moving between fixation distances at 2, 1, 0.5 and 0.33 m. Vergence and accommodation response gain matured rapidly from 'flat' neonatal responses at an intercept of approximately 2 dioptres (D) for accommodation and 2.5 metre angles(MA) for vergence, reaching adult-like values at 4 months. Vergence gain was marginally higher in females (p = 0.064), but accommodation gain (p = 0.034) was higher and accommodative intercept closer to zero (p = 0.004) in males in the first 3 months as they relaxed accommodation more appropriately for distant targets. More females showed flat accommodation responses (p = 0.029). More males behaved hypermetropically in the first two months of life, but when these hypermetropic infants were excluded from the analysis, the gender difference remained. Gender differences disappeared after three months. Data showed variable responses and infants could behave appropriately and simultaneously on both, neither or only one measure at all ages. If accommodation was appropriate (gain between 0.7 and 1.3; r(2) > 0.7) but vergence was not, males over- and under-converged equally, while the females who accommodated appropriately were more likely to overconverge (p = 0.008). The apparent earlier maturity of the male accommodative responses may be due to refractive error differences but could also reflect gender-specific male preference for blur cues while females show earlier preference for disparity, which may underpin the earlier emerging, disparity dependent, stereopsis and full vergence found in females in other studies.