36 resultados para biome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket bogs in the UK, and it is not necessary to invoke anthropogenic activity as a driver of this major landscape change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blanket bog occupies approximately 6% of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanketbog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts that large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland,Wales, and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre- Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket bogs in the UK, and it is not necessary to invoke anthropogenic activity as a driver of this major landscape change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Test hypotheses that present biodiversity and endemic species richness are related to climatic stability and/or biome persistence.Location Africa south of 15° S. Methods Seventy eight HadCM3 general circulation model palaeoclimate experiments spanning the last 140,000 years, plus a pre-industrial experiment,were used to calculate measures of climatic variability for 0.5° grid cells. Models were fitted relating distributions of the nine biomes of South Africa,Lesotho and Swaziland to present climate. These models were used to simulate potential past biome distribution and extent for the 78 palaeoclimate experiments, and three measures of biome persistence. Climatic response surfaces were fitted for 690 bird species regularly breeding in the region and used to simulate present species richness for cells of the 0.5° grid. Species richness was evaluated for residents, mobile species (nomadic or partially/altitudinally migrant within the region), and intra-African migrants, and also separately for endemic/near-endemic (hereafter ‘endemic’) species as a whole and those associated with each biome. Our hypotheses were tested by analysing correlations between species richness and climatic variability or biome persistence. Results The magnitude of climatic variability showed clear spatial patterns. Marked changes in biome distributions and extents were projected, although limited areas of persistence were projected for some biomes. Overall species richness was not correlated with climatic variability, although richness of mobile species showed a weak negative correlation. Endemic species richness was significantly negatively correlated with climatic variability. Strongest correlations, however, were positive correlations between biome persistence and richness of endemics associated with individual biomes. Main conclusions Low climatic variability, and especially a degree of stability enabling biome persistence, is strongly correlated with species richness of birds endemic to southern Africa. This probably principally reflects reduced extinction risk for these species where the biome to which they are adapted persisted

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with sim- ulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distribu- tions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those in- ferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large- scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are re- flected in BIOME4 simulations of global net primary pro- ductivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composi- tion of seawater as terrestrial carbon is depleted in 13C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.