51 resultados para bimanual coordination
Resumo:
The coordination behavior of pyridylmethylthioether type of organic moieties having N2S2 donor set [L-1=1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethyl-thio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane] with copper(II) chloride and copper(II) bromide have been studied in different chemical environments. Copper(II) chloride assisted C-S bond cleavage of the organic moieties leading to the formation of copper(II) picolinate derivatives, whereas, under similar experimental conditions, no C-S bond cleavage was observed in the reaction with copper(II) bromide. The resulted copper(II) complexes isolated from the different mediums have been characterized by spectroscopic and X-ray crystallographic tools.
Resumo:
This paper analyzes the delay performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under ideal condition and in the presence of transmission errors. Relays are nodes capable of supporting high data rates for other low data rate nodes. In ideal channel ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF). This gain is still maintained in the presence of errors. It is also expected of relays to reduce the delay. However, the impact on the delay behavior of ErDCF under transmission errors is not known. In this work, we have presented the impact of transmission errors on delay. It turns out that under transmission errors of sufficient magnitude to increase dropped packets, packet delay is reduced. This is due to increase in the probability of failure. As a result the packet drop time increases, thus reflecting the throughput degradation.
Resumo:
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
What happens when digital coordination practices are introduced into the institutionalized setting of an engineering project? This question is addressed through an interpretive study that examines how a shared digital model becomes used in the late design stages of a major station refurbishment project. The paper contributes by mobilizing the idea of ‘hybrid practices’ to understand the diverse patterns of activity that emerge to manage digital coordination of design. It articulates how engineering and architecture professions develop different relationships with the shared model; the design team negotiates paper-based practices across organizational boundaries; and diverse practitioners probe the potential and limitations of the digital infrastructure. While different software packages and tools have become linked together into an integrated digital infrastructure, these emerging hybrid practices contrast with the interactions anticipated in practice and policy guidance and presenting new opportunities and challenges for managing project delivery. The study has implications for researchers working in the growing field of empirical work on engineering project organizations as it shows the importance of considering, and suggests new ways to theorise, the introduction of digital coordination practices into these institutionalized settings.
Resumo:
2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.
Resumo:
In recent years, there has been an increase in research on conventions motivated by the game-theoretic contributions of the philosopher David Lewis. Prior to this surge in interest, discussions of convention in economics had been tied to the analysis of John Maynard Keynes's writings. These literatures are distinct and have very little overlap. Yet this confluence of interests raises interesting methodological questions. Does the use of a common term, convention, denote a set of shared concerns? Can we identify what differentiates the game theoretic models from the Keynesian ones? This paper maps out the three most developed accounts of convention within economics and discusses their relations with each other in an attempt to provide an answer.
Resumo:
Background and aims: In addition to the well-known linguistic processing impairments in aphasia, oro-motor skills and articulatory implementation of speech segments are reported to be compromised to some degree in most types of aphasia. This study aimed to identify differences in the characteristics and coordination of lip movements in the production of a bilabial closure gesture between speech-like and nonspeech tasks in individuals with aphasia and healthy control subjects. Method and procedure: Upper and lower lip movement data were collected for a speech-like and a nonspeech task using an AG 100 EMMA system from five individuals with aphasia and five age and gender matched control subjects. Each task was produced at two rate conditions (normal and fast), and in a familiar and a less-familiar manner. Single articulator kinematic parameters (peak velocity, amplitude, duration, and cyclic spatio-temporal index) and multi-articulator coordination indices (average relative phase and variability of relative phase) were measured to characterize lip movements. Outcome and results: The results showed that when the two lips had similar task goals (bilabial closure) in speech-like versus nonspeech task, kinematic and coordination characteristics were not found to be different. However, when changes in rate were imposed on the bilabial gesture, only speech-like task showed functional adaptations, indicated by a greater decrease in amplitude and duration at fast rates. In terms of group differences, individuals with aphasia showed smaller amplitudes and longer movement durations for upper lip, higher spatio-temporal variability for both lips, and higher variability in lip coordination than the control speakers. Rate was an important factor in distinguishing the two groups, and individuals with aphasia were limited in implementing the rate changes. Conclusion and implications: The findings support the notion of subtle but robust differences in motor control characteristics between individuals with aphasia and the control participants, even in the context of producing bilabial closing gestures for a relatively simple speech-like task. The findings also highlight the functional differences between speech-like and nonspeech tasks, despite a common movement coordination goal for bilabial closure.
Resumo:
Three new zinc(II)-hexamethylenetetramine (hmt) complexes [Zn-2(4-nbz)(4)(mu(2)-hmt)(OH2)(hmt)] (1). [Zn-2(2-nbz)(4)(mu(2)-hmt)(2)](n) (2) and [Zn-3(3-nbz)(4)(mu(2)-hmt)(mu(2)-OH)(mu(3)-OH)](n) (3) with three isomeric nitrobenzoate, [4-nbz = 4-nitrobenzoate, 2-nbz = 2-nitrobenzoate and 3-nbz = 3-nitrobenzoate] have been synthesized and structurally characterized by X-ray crystallography. Their identities have also been established by elemental analysis: IR, NMR, UV-Vis and mass spectral studies. 1 is a dinuclear complex formed by bridging hmt with mu(2) coordinating mode. The geometry around the Zn centers in 1 is distorted tetrahedral. Paddle-wheel centrosymmetric Zn-2(2-nbz)(4) units of complex 2 are interconnected by mu(2)-hmt forming a one-dimensional chain with square-pyramidal geometries around the Zn centers. Compound 3 contains a mu(2)/mu(3)-hydroxido and mu(2)-hmt bridged 1D chain. In this complex, varied geometries around the Zn centers are observed viz, tetrahedral, square pyramidal and trigonal bipyramidal. Various weak forces, i.e. lone pair-pi, pi-pi and CH-pi interactions, play a key role in stabilizing the observed structures for complexes 1,2 and 3. This series of complexes demonstrates that although the nitro group does not coordinate to the metal center, its presence at the 2-, 3- or 4-position of the phenyl ring has a striking effect on the dimensionality as well as the structure of the resulted coordination polymers, probably due to the participation of the nitro group in 1.p.center dot center dot center dot pi and/or C-H center dot center dot center dot pi interactions.
Resumo:
Three new Mn(II) coordination compounds {[Mn(NCNCN)2(azpy)]·0.5azpy}n (1), {[Mn(NCS)2(azpy)(CH3OH)2]·azpy}n (2), and [Mn(azpy)2(H2O)4][Mn(azpy)(H2O)5]·4PF6·H2O·5.5azpy (3) (where azpy = 4,4'-azobis-(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest pi center dot center dot center dot pi. and C-H center dot center dot center dot N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (ID) chains of centrosymmetric [Mn(NCS)(2)(CH3OH)(2)} units which form a 2D porous sheet via a CH3 center dot center dot center dot pi supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist pi center dot center dot center dot pi, anion center dot center dot center dot pi, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.
Resumo:
Reaction of [Cu(pic)2]·2H2O (where pic stands for 2-picolinato) with 2-({[2-(dimethylamino)ethyl]amino}methyl)phenol (HL1) produces the square-pyramidal complex [CuL1(pic)] (1), which crystallizes as a conglomerate (namely a mixture of optically pure crystals) in the Sohncke space group P212121. The use of the methylated ligand at the benzylic position, i.e. (±)-2-(1-{[2-(dimethylamino)ethyl]amino}ethyl)phenol (HL2), yields the analogous five-coordinate complex [CuL2(pic)] (2) that crystallizes as a true racemate (namely the crystals contain both enantiomers) in the centrosymmetric space group P21/c. Density functional theory (DFT) calculations indicate that the presence of the methyl group indeed leads to a distinct crystallization behaviour, not only by intramolecular steric effects, but also because its involvement in non-covalent C–H···π and hydrophobic intermolecular contacts appears to be an important factor contributing to the crystal-lattice (stabilizing) energy of 2
Resumo:
An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(II) (3), Pt(II) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(II) and Pt(II) center reveals C-H center dot center dot center dot Pd and C-H center dot center dot center dot Pt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with sigma(rt) values similar to 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.
Resumo:
The coordination of work and expertise in construction projects is often treated in terms of models or formal rules. However, much is to be gained, if we are to understand it, by examining actual coordination practices. The objective in this article is to address practices of coordination of expertise in the context of design team meetings. The focus is specifically on conversational practices between the structural engineer and the landscape architect part of the design team in a healthcare infrastructure project. The central argument is that the coordination of expertise relied on and was organised by mundane and everyday methods, and not by formal and abstract ones. This argument is drawn from ethnomethodology, a form of sociological analysis that focuses on the situated methods by which activities are produced, but shares concerns found in the literature on actual project management practices. The ethnomethodological stance, however, offers a different perspective on the significance of the empirical reality of projects and a possibility to incorporate within this literature a concern with the ordinary methodical organisation of project activities.
Resumo:
We report here a unique chiral hybrid gallium sulfide, [NC2H8]2[Ga10S16(N2C12H12)(NC2H7)2] 1, consisting of helical chains of organically-functionalised supertetrahedral clusters which form quadruple-stranded helical nanotubes of ca. 3 nm diameter. This material therefore consists of discrete metal-organic nanotubes which, to the best of our knowledge, are extremely rare. Whilst solvothermal reactions involving 1,2-di(4-pyridyl)ethylene (DPE) resulted in the formation of such single-walled chiral nanotubes, the use of longer 4,4’-trimethylenedipyridine (TMP) ligands resulted in the synthesis of a two-dimensional hybrid gallium sulfide, [C5H6N]3[Ga10S16(OH)(N2C13H14)] 2 in which, for the first time, inorganic and organic linkages between supertetrahedral clusters coexist.