56 resultados para agent-based simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brand competition is modelled using an agent based approach in order to examine the long run dynamics of market structure and brand characteristics. A repeated game is designed where myopic firms choose strategies based on beliefs about their rivals and consumers. Consumers are heterogeneous and can observe neighbour behaviour through social networks. Although firms do not observe them, the social networks have a significant impact on the emerging market structure. Presence of networks tends to polarize market share and leads to higher volatility in brands. Yet convergence in brand characteristics usually happens whenever the market reaches a steady state. Scale-free networks accentuate the polarization and volatility more than small world or random networks. Unilateral innovations are less frequent under social networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses how the use of computer-based modelling tools has aided the design of a telemetry unit for use with oil well logging. With the aid of modern computer-based simulation techniques, the new design is capable of operating at data rates of 2.5 times faster than previous designs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The National Grid Company plc. owns and operates the electricity transmission network in England and Wales, the day to day running of the network being carried out by teams of engineers within the national control room. The task of monitoring and operating the transmission network involves the transfer of large amounts of data and a high degree of cooperation between these engineers. The purpose of the research detailed in this paper is to investigate the use of interfacing techniques within the control room scenario, in particular, the development of an agent based architecture for the support of cooperative tasks. The proposed architecture revolves around the use of interface and user supervisor agents. Primarily, these agents are responsible for the flow of information to and from individual users and user groups. The agents are also responsible for tackling the synchronisation and control issues arising during the completion of cooperative tasks. In this paper a novel approach to human computer interaction (HCI) for power systems incorporating an embedded agent infrastructure is presented. The agent architectures used to form the base of the cooperative task support system are discussed, as is the nature of the support system and tasks it is intended to support.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper analyses the emergence of group-specific attitudes and beliefs about tax compliance when individuals interact in a social network. It develops a model in which taxpayers possess a range of individual characteristics – including attitude to risk, potential for success in self-employment, and the weight attached to the social custom for honesty – and make an occupational choice based on these characteristics. Occupations differ in the possibility for evading tax. The social network determines which taxpayers are linked, and information about auditing and compliance is transmitted at meetings between linked taxpayers. Using agent-based simulations, the analysis demonstrates how attitudes and beliefs endogenously emerge that differ across sub-groups of the population. Compliance behaviour is different across occupational groups, and this is reinforced by the development of group-specific attitudes and beliefs. Taxpayers self-select into occupations according to the degree of risk aversion, the subjective probability of audit is sustained above the objective probability, and the weight attached to the social custom differs across occupations. These factors combine to lead to compliance levels that differ across occupations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As wind generation increases, system impact studies rely on predictions of future generation and effective representation of wind variability. A well-established approach to investigate the impact of wind variability is to simulate generation using observations from 10 m meteorological mast-data. However, there are problems with relying purely on historical wind-speed records or generation histories: mast-data is often incomplete, not sited at a relevant wind generation sites, and recorded at the wrong altitude above ground (usually 10 m), each of which may distort the generation profile. A possible complimentary approach is to use reanalysis data, where data assimilation techniques are combined with state-of-the-art weather forecast models to produce complete gridded wind time-series over an area. Previous investigations of reanalysis datasets have placed an emphasis on comparing reanalysis to meteorological site records whereas this paper compares wind generation simulated using reanalysis data directly against historic wind generation records. Importantly, this comparison is conducted using raw reanalysis data (typical resolution ∼50 km), without relying on a computationally expensive “dynamical downscaling” for a particular target region. Although the raw reanalysis data cannot, by nature of its construction, represent the site-specific effects of sub-gridscale topography, it is nevertheless shown to be comparable to or better than the mast-based simulation in the region considered and it is therefore argued that raw reanalysis data may offer a number of significant advantages as a data source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatio-temporal landscape heterogeneity has rarely been considered in population-level impact assessments. Here we test whether landscape heterogeneity is important by examining the case of a pesticide applied seasonally to orchards which may affect non-target vole populations, using a validated ecologically realistic and spatially explicit agent-based model. Voles thrive in unmanaged grasslands and untreated orchards but are particularly exposed to applied pesticide treatments during dispersal between optimal habitats. We therefore hypothesised that vole populations do better (1) in landscapes containing more grassland and (2) where areas of grassland are closer to orchards, but (3) do worse if larger areas of orchards are treated with pesticide. To test these hyposeses we made appropriate manipulations to a model landscape occupied by field voles. Pesticide application reduced model population sizes in all three experiments, but populations subsequently wholly or partly recovered. Population depressions were, as predicted, lower in landscapes containing more unmanaged grassland, in landscapes with reduced distance between grassland and orchards, and in landscapes with fewer treated orchards. Population recovery followed a similar pattern except for an unexpected improvement in recovery when the area of treated orchards was increased. Outside the period of pesticide application, orchards increase landscape connectivity and facilitate vole dispersal and so speed population recovery. Overall our results show that accurate prediction of population impact cannot be achieved without taking account of landscape structure. The specifics of landscape structure and habitat connectivity are likely always important in mediating the effects of stressors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

More and more households are purchasing electric vehicles (EVs), and this will continue as we move towards a low carbon future. There are various projections as to the rate of EV uptake, but all predict an increase over the next ten years. Charging these EVs will produce one of the biggest loads on the low voltage network. To manage the network, we must not only take into account the number of EVs taken up, but where on the network they are charging, and at what time. To simulate the impact on the network from high, medium and low EV uptake (as outlined by the UK government), we present an agent-based model. We initialise the model to assign an EV to a household based on either random distribution or social influences - that is, a neighbour of an EV owner is more likely to also purchase an EV. Additionally, we examine the effect of peak behaviour on the network when charging is at day-time, night-time, or a mix of both. The model is implemented on a neighbourhood in south-east England using smart meter data (half hourly electricity readings) and real life charging patterns from an EV trial. Our results indicate that social influence can increase the peak demand on a local level (street or feeder), meaning that medium EV uptake can create higher peak demand than currently expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We formulate an agent-based population model of Escherichia coli cells which incorporates a description of the chemotaxis signalling cascade at the single cell scale. The model is used to gain insight into the link between the signalling cascade dynamics and the overall population response to differing chemoattractant gradients. Firstly, we consider how the observed variation in total (phosphorylated and unphosphorylated) signalling protein concentration affects the ability of cells to accumulate in differing chemoattractant gradients. Results reveal that a variation in total cell protein concentration between cells may be a mechanism for the survival of cell colonies across a wide range of differing environments. We then study the response of cells in the presence of two different chemoattractants.In doing so we demonstrate that the population scale response depends not on the absolute concentration of each chemoattractant but on the sensitivity of the chemoreceptors to their respective concentrations. Our results show the clear link between single cell features and the overall environment in which cells reside.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the relationship between the sentiment levels of Twitter users and the evolving network structure that the users created by @-mentioning each other. We use a large dataset of tweets to which we apply three sentiment scoring algorithms, including the open source SentiStrength program. Specifically we make three contributions. Firstly we find that people who have potentially the largest communication reach (according to a dynamic centrality measure) use sentiment differently than the average user: for example they use positive sentiment more often and negative sentiment less often. Secondly we find that when we follow structurally stable Twitter communities over a period of months, their sentiment levels are also stable, and sudden changes in community sentiment from one day to the next can in most cases be traced to external events affecting the community. Thirdly, based on our findings, we create and calibrate a simple agent-based model that is capable of reproducing measures of emotive response comparable to those obtained from our empirical dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a queue-based agent architecture for multimodal interfaces. Using a novel approach to intelligently organise both agents and input data, this system has the potential to outperform current state-of-the-art multimodal systems, while at the same time allowing greater levels of interaction and flexibility. This assertion is supported by simulation test results showing that significant improvements can be obtained over normal sequential agent scheduling architectures. For real usage, this translates into faster, more comprehensive systems, without the limited application domain that restricts current implementations.