60 resultados para adenosine receptor binding study
Resumo:
There is an expanding repertoire of mammalian tachykinins produced by a variety of tachykinin genes, gene splicing events and peptide processing. Novel tachykinin-binding molecules/receptors are proposed, but only, three tachykinin receptors are identified with certainty. The question remains - do more tachykinin receptors exist or is there just the need to reappraise Our understanding of the known receptors? The tachykinin NK1 receptor, the preferred receptor for both substance P and the peripheral SP-like endokinins, exists in several tissue-specific conformations and isoforms and may provide some clues. This review addresses recent advances in this exciting field and raises challenging new concepts. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The novel dioxatetraaza macrocycle [26]phen(2)N(4)O(2), which incorporates two phenanthroline units, has been synthesized, and its acid-base behavior has been evaluated by potentiometric and H-1 NMR methods. Six protonation constants were determined, and the protonation sequence was established by NMR. The location of the fifth proton on the phen nitrogen was confirmed by X-ray determinations of the crystal structures of the receptor as bromide and chloride salts. The two compounds have the general molecular formula {(H-5[26]phen(2)N(4)O(2))X-n(H2O)(5-n)}X(n-1)(.)mH(2)O, where X = Cl, n = 3, and m = 6 or X = Br, n = 4, and m = 5.5. In the solid state, the (H-5[26]phen(2)N(4)O(2))(5+) cation adopts a "horseshoe" topology with sufficient room to encapsulate three or four halogen anions through the several N-(HX)-X-... hydrogen-bonding interactions. Two supermolecules {(H-5[26]phen(2)N(4)O(2))X-n(H2O)(5-n)}((5-n)+) form an interpenetrating dimeric species, which was also found by ESI mass spectrum. Binding studies of the protonated macrocycle with aliphatic (ox(2-), mal(2-), suc(2-), cit(3-), cta(3-)) and aromatic (bzc(-), naphc(-), anthc(-), pyrc(-), ph(2-), iph(2-), tph(2-), btc(3-)) anions were determined in water by potentiometric methods. These studies were complemented by H-1 NMR titrations in D2O of the receptor with selected anions. The H-i[26]phen(2)N(4)O(2)(i+) receptor can selectively uptake highly charged or extended aromatic carboxylate anions, such as btc(3-) and pyrc(-), in the pH ranges of 4.0-8.5 and < 4.0, respectively, from aqueous solution that contain the remaining anions as pollutants or contaminants. To obtain further insight into these structural and experimental findings, molecular dynamics (MD) simulations were carried out in water solution.
Resumo:
A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl-, PF6-, HSO4-, H2PO4- and carboxylates, such as p-nitrobenzoate (p-nbz(-)), phthalate (ph(2-)), isophthalate (iph(2-)) and dipicolinate (dipic(2-)). H-1 NMR titrations in CD3OD indicated that this receptor is not suitable for recognizing HSO4- and H2PO4-, but weakly binds p-nbz(-), and strongly interacts with ph(2-), dipic(2-), and iph(2-) anions forming 1 : 2 assembled species. The largest beta(2) binding constant was determined for ph(2-), followed by dipic(2-) and finally iph(2-). The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm(-3) (CH3)(4)NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic(2-), ph(2-) and iph(2-) anions, but not for p-nbz(-). In spite of the slow kinetics of assembled species formation with the ph(2-) substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic(2-), iph(2-) and finally p-nbz(-) anions. This trend is in agreement with the H-1 NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF6-, ph(2-), iph(2-) and p-nbz(-) were carried out and showed that supermolecules with a RS2 stoichiometry are formed with the first three anions, but RS4 with p-nbz(-). In all cases the binding occurs outside the macrocyclic cavity via N-H center dot center dot center dot O=C hydrogen bonds for carboxylate anions and N - H center dot center dot center dot F hydrogen bonds for the PF6- anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe center dot center dot center dot Fe intramolecular distances ranging from 10.125(14) to 12.783(15) angstrom.
Resumo:
Molecular modelling studies have been carried out on two bis(calix[4]diqu(inone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH2)(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na+, K+, Rb+, and Cs+ in dmso solution. Conformational. analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion, of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb+ approximate to K+ > Cs+ >> Na+, which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs+ and K+ complexes is only 0.60, showing that 1 has only a slight preference for K+. For the larger receptor 2, which is better suited to metal complexation, the binding affinity follows the pattern Cs+ >> Rb+ >> K+ >> Na+, with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.
Resumo:
Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 angstrom resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)(2) molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.
Resumo:
It is recognised that cholera toxin (Ctx) is a significant cause of gastrointestinal disease globally, particularly in developing countries where access to uncontaminated drinking water is at a premium. Ctx vaccines are prohibitively expensive and only give short-term protection. Consequently, there is scope for the development of alternative control strategies or prophylactics. This may include the use of oligosaccharides as functional mimics for the cell-surface toxin receptor (GM I). Furthermore, the sialic acid component of epithelial receptors has already been shown to contribute significantly to the adhesion and pathogenesis of Ctx. Here, we demonstrate the total inhibition of Ctx using GM1-competitive ELISA with 25 mg mL(-1) of a commercial preparation of sialyloligosaccharides (SOS). The IC50 value was calculated as 5.21 mg mL(-1). One-hundred percent inhibition was also observed at all concentrations of Ctx-HRP tested with 500 ng mL(-1) GM1-OS. Whilst SOS has much lower affinity for Ctx than GM1-OS, the commercial preparation is impure containing only 33.6% carbohydrate; however, the biantennary nature of SOS appears to give a significant increase in potency over constituent monosaccahride residues. It is proposed that SOS could be used as a conventional food additive, such as in emulsifiers, stabilisers or sweeteners, and are classified as nondigestible oligosaccharides that pass into the small intestine, which is the site of Ctx pathogenesis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of epicatechin with bovine serum albumin (BSA) was studied by isothermal titration calorimetry. The binding constant (K) and associated thermodynamic binding parameters (n, Delta H) were determined for the interaction at three solution concentrations of BSA using a binding model assuming independent binding sites. These data show weak non-covalent binding of epicatechin to BSA. The interaction energetics varied with BSA concentration in the calorimeter cell, suggesting that the binding of epicatechin induced BSA aggregation. The free energy (Delta G) remained constant within a range of 2 kJ mol(-1) and negative entropy was observed, indicating an enthalpy driven exothermic interaction. It is concluded that the non-covalent epicatechin-BSA complex is formed by hydrogen bonding. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.
Resumo:
Background and purpose: The aim of this report is to study mechanisms of G protein activation by agonists. Experimental approach: The association and dissociation of guanosine 5'-O-(3-[S-35] thio) triphosphate ([S-35] GTP gamma S) binding at G proteins in membranes of CHO cells stably transfected with the human dopamine D-2short receptor was studied in the presence of a range of agonists. Key results: Binding of [S-35] GTPgS was dissociable in the absence of agonist and dissociation was accelerated both in rate and extent by dopamine, an effect which was blocked by the dopamine D-2 receptor antagonist raclopride and by suramin, which inhibits receptor/G protein interaction. A range of agonists of varying efficacy increased the rate of dissociation of [S-35] GTPgS binding, with the more efficacious agonists resulting in faster dissociation. Agonists were able to dissociate about 70% of the pre-bound [S-35] GTPgS, leaving a component which may not be accessible to the agonist-bound receptor. The dissociable component of the [S-35] GTPgS binding was reduced with longer association times and increased [S-35] GTPgS concentrations. Conclusions and implications: These data are consistent with [S-35] GTPgS binding being initially to receptor-linked G proteins and then to G proteins which have separated from the agonist bound receptor. Under the conditions used typically for [S-35] GTPgS binding assays, therefore, much of the agonist-receptor complex remains in proximity to G proteins after they have been activated by agonist.
Resumo:
We have investigated the signalling properties of the chemokine receptor, CCR5, using several assays for agonism: stimulation of changes in intracellular Ca(2+) or CCR5 internalisation in CHO cells expressing CCR5 or stimulation of [(35)S]GTPgammaS binding in membranes of CHO cells expressing CCR5. Four isoforms of the chemokine CCL3 with different amino termini (CCL3, CCL3(2-70), CCL3(5-70), CCL3L1) were tested in these assays in order to probe structure/activity relationships. Each isoform exhibited agonism. The pattern of agonism (potency, maximal effect) was different in the three assays, although the rank order was the same with CCL3L1 being the most potent and efficacious. The data show that the amino terminus of the chemokine is important for signalling. A proline at position 2 (CCL3L1) provides for high potency and efficacy but the isoform with a serine at position 2 (CCL3(2-70)) is as efficacious in some assays showing that the proline is not the only determinant of high efficacy. We also increased the sensitivity of CCR5 signalling by treating cells with sodium butyrate, thus increasing the receptor/G protein ratio. This allowed the detection of a change in intracellular Ca(2+) after treatment with CCL7 and Met-RANTES showing that these ligands possess measurable but low efficacy. This study therefore shows that sodium butyrate treatment increases the sensitivity of signalling assays and enables the detection of efficacy in ligands previously considered as antagonists. The use of different assay systems, therefore, provides different estimates of efficacy for some ligands at this receptor.
Resumo:
Homologous desensitization of beta(2)-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta(2)-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta(2)-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.
Resumo:
Antagonists of the chemokine receptor, CCRS, may provide important new drugs for the treatment of HIV-1. In this study we have examined the mechanism of action of two functional antagonists of the chemokine receptor CCRS (UK-396,794, UK-438,235) in signalling and internalisation assays using CHO cells expressing CCR5. Both compounds were potent inverse agonists versus agonist-independent [S-3]GTP gamma S binding to membranes of CHO cells expressing CCR5. Both compounds also acted as allosteric inhibitors of CCL5 (RANTES) and CCL8 (MCP-2) -stimulated [S-35]GTP gamma S binding to CHO-CCR5 membranes, reducing the potency and maximal effects of the two chemokines. The data are consistent with effects of the allosteric inhibitors on both the binding and signalling of the chemokines. Both compounds inhibited CCR5 internalisation triggered by chemokines. When CHO-CCR5 cells were treated with either of the two compounds for prolonged periods of time (24 h) an increase (similar to 15%) in cell surface CCRS was detected. (C) 2007 Elsevier Inc. All rights reserved
Resumo:
Influenza viruses attach to host cells by binding to terminal sialic acid (Neu5Ac) on glycoproteins or glycolipids. Both the linkage of Neu5Ac and the identity of other carbohydrates within the oligosaccharide are thought to play roles in restricting the host range of the virus. In this study, the receptor specificity of an H5 avian influenza virus haemagglutinin protein that has recently infected man (influenza strain A/Vietnam/1194/04) has been probed using carbohydrate functionalised poly(acrylic acid) polymers. A baculovirus expression system that allows facile and safe analysis of the Neu5Ac binding specificity of mutants of H5 HA engineered at sites that are predicted to effect a switch in host range has also been developed. (C) 2007 Elsevier Ltd. All rights reserved.