32 resultados para Xanthomonas axonopodis pv. malvacearum
Resumo:
A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.
Resumo:
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of Pseudomonas syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K+, that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca2+, Fe2/3+ Mg2+, sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.