50 resultados para Wood Rot
Resumo:
The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo
Resumo:
A tribute to Robin Wood, focusing on his influence on horror criticism, and more specifically, on his appraisal of George A. Romero as ‘a great and audacious filmmaker’ through detailed consideration of his zombie movies. The article considers the key elements of his extraordinary influence on horror criticism, and a detailed examination of the monster which most directly responds to horror’s potential ambivalence: the zombie. In order to consider the ambivalence in the relationship between normality and the monster – that central and most important component of Wood’s horror criticism – created by Romero’s zombies, analysis focuses on the materiality of the films through close attention to the bodies on-screen.
Resumo:
Bacterial soft rot is a globally significant plant disease that causes major losses in the production of many popular crops, such as potato. Little is known about the dispersal and ecology of soft-rot enterobacteria, and few animals have been identified as vectors for these pathogens. This study investigates whether soil-living and bacterial-feeding nematodes could act as vectors for the dispersal of soft-rot enterobacteria to plants. Soft-rot enterobacteria associated with nematodes were quantified and visualized through bacterial enumeration, GFP-tagging, and confocal and electron scanning microscopy. Soft-rot enterobacteria were able to withstand nematode grazing, colonize the gut of Caenorhabditis elegans and subsequently disperse to plant material while remaining virulent. Two nematode species were also isolated from a rotten potato sample obtained from a potato storage facility in Finland. Furthermore, one of these isolates (Pristionchus sp. FIN-1) was shown to be able to disperse soft-rot enterobacteria to plant material. The interaction of nematodes and soft-rot enterobacteria seems to be more mutualistic rather than pathogenic, but more research is needed to explain how soft-rot enterobacteria remain viable inside nematodes.
Resumo:
The potential risk of agricultural pesticides to mammals typically depends on internal concentrations within individuals, and these are determined by the amount ingested and by absorption, distribution, metabolism, and excretion (ADME). Pesticide residues ingested depend, amongst other things, on individual spatial choices which determine how much and when feeding sites and areas of pesticide application overlap, and can be calculated using individual-based models (IBMs). Internal concentrations can be calculated using toxicokinetic (TK) models, which are quantitative representations of ADME processes. Here we provide a population model for the wood mouse (Apodemus sylvaticus) in which TK submodels were incorporated into an IBM representation of individuals making choices about where to feed. This allows us to estimate the contribution of individual spatial choice and TK processes to risk. We compared the risk predicted by four IBMs: (i) “AllExposed-NonTK”: assuming no spatial choice so all mice have 100% exposure, no TK, (ii) “AllExposed-TK”: identical to (i) except that the TK processes are included where individuals vary because they have different temporal patterns of ingestion in the IBM, (iii) “Spatial-NonTK”: individual spatial choice, no TK, and (iv) “Spatial-TK”: individual spatial choice and with TK. The TK parameters for hypothetical pesticides used in this study were selected such that a conventional risk assessment would fail. Exposures were standardised using risk quotients (RQ; exposure divided by LD50 or LC50). We found that for the exposed sub-population including either spatial choice or TK reduced the RQ by 37–85%, and for the total population the reduction was 37–94%. However spatial choice and TK together had little further effect in reducing RQ. The reasons for this are that when the proportion of time spent in treated crop (PT) approaches 1, TK processes dominate and spatial choice has very little effect, and conversely if PT is small spatial choice dominates and TK makes little contribution to exposure reduction. The latter situation means that a short time spent in the pesticide-treated field mimics exposure from a small gavage dose, but TK only makes a substantial difference when the dose was consumed over a longer period. We concluded that a combined TK-IBM is most likely to bring added value to the risk assessment process when the temporal pattern of feeding, time spent in exposed area and TK parameters are at an intermediate level; for instance wood mice in foliar spray scenarios spending more time in crop fields because of better plant cover.
Resumo:
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. We evaluated the effect of P. indica on Fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilised soil-free medium or in a non-sterilised mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real-time polymerase chain reaction (qPCR). The ratio of Fusarium DNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. P. indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of Fusarium DNA in root systems increased in the absence of P. indica but was static in plants co-inoculated with P. indica.
Resumo:
Traces the development of new letterforms for printing in the first 30 years of the nineteenth century.