270 resultados para Winter wheat.
Resumo:
Winter wheat was grown in three field experiments, each repeated over two or three seasons, to investigate effects of extending flag leaf life by fungicide application on the concentration, kg ha(-1) and mg grain(-1) of nitrogen (N) and sulphur (S) as well as N:S ratio and sodium dodecyl sulphate (SDS) sedimentation volume. The experiments involved up to six cultivars and different application rates, timings and frequencies of azoxystrobin and epoxiconazole. For every day the duration to 37 % green flag leaf area (m) was extended, N yield was increased by 2.58 kg ha(-1), N per grain by 0.00957 mg, S yield by 0.186 kg ha(-1) and S per grain by 0.000718 mg. The N:S ratio decreased by 0.0135 per day. There was no evidence that these responses varied with cultivar. In contrast, the relationship between flag leaf life and N or S concentration interacted with cultivar. The N and S concentrations of Shamrock, the cultivar that suffered most from brown rust (Puccinia rccondita), increased with the extension of flag leaf life whereas the concentrations of N and S in Malacca, a cultivar more susceptible to Septoria tritici, decreased as flag leaf senescence was delayed. This was because the relationships between m and N and S yields were much better conserved over cultivars than those between m and thousand grain weight (TGW) and grain yield ha(-1). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Wheat flour from plants deficient in sulfur has been shown to contain substantially higher levels of free amino acids, particularly asparagine and glutamine, than flour from wheat grown where sulfur nutrition was sufficient. Elevated levels of asparagine resulted in acrylamide levels up to 6 times higher in sulfur-deprived wheat flour, compared with sulfur-sufficient wheat flour, for three varieties of winter wheat. The volatile compounds from flour, heated at 180 degrees C for 20 min, have been compared for these three varieties of wheat grown with and without sulfur fertilizer. Approximately 50 compounds were quantified in the headspace extracts of the heated flour; over 30 compounds were affected by sulfur fertilization, and 15 compounds were affected by variety. Unsaturated aldehydes formed from aldol condensations, Strecker. aldehydes, alkylpyrazines, and low molecular weight alkylfurans were found at higher concentrations in the sulfur-deficient flour, whereas low molecular weight pyrroles and thiophenes and sugar breakdown products were found at higher concentrations in the sulfur-sufficient flour. The reasons for these differences and the relationship between acrylamide formation and aroma volatile formation are discussed.
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
New crop cultivars will be required for a changing climate characterised by increased summer drought and heat stress in Europe. However, the uncertainty in climate predictions poses a challenge to crop scientists and breeders who have limited time and resources and must select the most appropriate traits for improvement. Modelling is a powerful tool to quantify future threats to crops and hence identify targets for improvement. We have used a wheat simulation model combined with local-scale climate scenarios to predict impacts of heat stress and drought on winter wheat in Europe. Despite the lower summer precipitation projected for 2050s across Europe, relative yield losses from drought is predicted to be smaller in the future, because wheat will mature earlier avoiding severe drought. By contrast, the risk of heat stress around flowering will increase, potentially resulting in substantial yield losses for heat sensitive cultivars commonly grown in northern Europe.
Resumo:
Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.
Resumo:
Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.
Resumo:
The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties ‘Robigus’ and ‘Solstice’ were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety ‘Robigus’, and QCp.niab.6A and QCp.niab.4D in the variety ‘Solstice’. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from ‘Robigus’ and Rht-D1b from ‘Solstice’. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions.
Resumo:
Grain legumes are known to increase the soil mineral nitrogen (N) content, reduce the infection pressure of soil borne pathogens, and hence enhance subsequent cereals yields. Replicated field experiments were performed throughout W. Europe (Denmark, United Kingdom, France, Germany and Italy) to asses the effect of intercropping pea and barley on the N supply to subsequent wheat in organic cropping systems. Pea and barley were grown either as sole crops at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs. In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with 'extra' barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark and the United Kingdom included subsequent spring wheat with grass-clover as catch crops. The experiment was repeated over the three cropping seasons of 2003, 2004 and 2005. Irrespective of sites and intercrop design pea-barley intercropping improved the plant resource utilization (water, light, nutrients) to grain N yield with 25-30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected by the preceding crops. Under the following winter wheat, the lowest mineral N content was generally found in early spring. Variation in soil mineral N content under the winter wheat between sites and seasons indicated a greater influence of regional climatic conditions and long-term cropping history than annual preceding crop and residue quality. Just as with the soil mineral N, the subsequent crop response to preceding crop was negligible. Soil N balances showed general negative values in the 2-year period, indicating depletion of N independent of preceding crop and cropping strategy. It is recommended to develop more rotational approaches to determine subsequent crop effects in organic cropping systems, since preceding crop effects, especially when including legumes, can occur over several years of cropping.
Resumo:
1. The establishment of grassy strips at the margins of arable fields is an agri-environment scheme that aims to provide resources for native flora and fauna and thus increase farmland biodiversity. These margins can be managed to target certain groups, such as farmland birds and pollinators, but the impact of such management on the soil fauna has been poorly studied. This study assessed the effect of seed mix and management on the biodiversity, conservation and functional value of field margins for soil macrofauna. 2. Experimental margin plots were established in 2001 in a winter wheat field in Cambridgeshire, UK, using a factorial design of three seed mixes and three management practices [spring cut, herbicide application and soil disturbance (scarification)]. In spring and autumn 2005, soil cores taken from the margin plots and the crop were hand-sorted for soil macrofauna. The Lumbricidae, Isopoda, Chilopoda, Diplopoda, Carabidae and Staphylinidae were identified to species and classified according to feeding type. 3. Diversity in the field margins was generally higher than in the crop, with the Lumbricidae, Isopoda and Coleoptera having significantly more species and/or higher abundances in the margins. Within the margins, management had a significant effect on the soil macrofauna, with scarified plots containing lower abundances and fewer species of Isopods. The species composition of the scarified plots was similar to that of the crop. 4. Scarification also reduced soil- and litter-feeder abundances and predator species densities, although populations appeared to recover by the autumn, probably as a result of dispersal from neighbouring plots and boundary features. The implications of the responses of these feeding groups for ecosystem services are discussed. 5. Synthesis and applications. This study shows that the management of agri-environment schemes can significantly influence their value for soil macrofauna. In order to encourage the litter-dwelling invertebrates that tend to be missing from arable systems, agri-environment schemes should aim to minimize soil cultivation and develop a substantial surface litter layer. However, this may conflict with other aims of these schemes, such as enhancing floristic and pollinator diversity.
Resumo:
Inter-simple sequence repeat (ISSR) analysis and aggressiveness assays were used to investigate genetic variability within a global collection of Fusarium culmorum isolates. A set of four ISSR primers were tested, of which three primers amplified a total of 37 bands out of which 30 (81%) were polymorphic. The intraspecific diversity was high, ranging from four to 28 different ISSR genotypes for F. culmorum depending on the primer. The combined analysis of ISSR data revealed 59 different genotypes clustered into seven distinct clades amongst 75 isolates of F. culmorum examined. All the isolates were assayed to test their aggressiveness on a winter wheat cv. 'Armada'. A significant quantitative variation for aggressiveness was found among the isolates. The ISSR and aggressiveness variation existed on a macro- as well as micro-geographical scale. The data suggested a long-range dispersal of F. culmorum and indicated that this fungus may have been introduced into Canada from Europe. In addition to the high level of intraspecific diversity observed in F. culmorum, the index of multilocus association calculated using ISSR data indicated that reproduction in F. culmorum cannot be exclusively clonal and recombination is likely to occur.
Resumo:
Three large deformation rheological tests, the Kieffer dough extensibility system, the D/R dough inflation system and the 2 g mixograph test, were carried out on doughs made from a large number of winter wheat lines and cultivars grown in Poland. These lines and cultivars represented a broad spread in baking performance in order to assess their suitability as predictors of baking volume. The parameters most closely associated with baking volume were strain hardening index, bubble failure strain, and mixograph bandwidth at 10min. Simple correlations with baking volume indicate that bubble failure strain and strain hardening index give the highest correlations, whilst the use of best subsets regression, which selects the best combination of parameters, gave increased correlations with R-2 = 0.865 for dough inflation parameters, R-2 = 0. 842 for Kieffer parameters and R-2 = 0.760 for mixograph parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
On 16 UK livestock holdings within pastoral landscapes, we investigated the provision of plant and invertebrate resources for farmland birds in spring barley and winter wheat cereal-based whole crop silages as alternatives to maize and grass silages. The benefits of low input barley systems were also investigated; barley fields were subjected to two separate herbicide sub-treatments on a split-field design (high input broad-spectrum or low input narrow spectrum herbicides). The abundance of plant resources and invertebrates was assessed for three growing seasons during summer and winter for each crop type. The study clearly demonstrated the value of spring barley for the provision of plant resources when compared to the other silage cropping systems, whilst invertebrate responses were variable. No differences in plant and invertebrate resources were found between the barley treatments. Throughout the year, forage maize afforded the lowest provision of resources for farmland birds, and because it is likely that maize will continue to be grown in pastoral areas, the value of this habitat needs to be improved if farmland birds are to benefit. To provide plant and invertebrate resources for farmland birds in pastoral landscapes we strongly advocate the growing of spring sown barley whole-crop silage followed by over-wintering stubbles. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Scintillometry is an established technique for determining large areal average sensible heat fluxes. The scintillometer measurement is related to sensible heat flux via Monin–Obukhov similarity theory, which was developed for ideal homogeneous land surfaces. In this study it is shown that judicious application of scintillometry over heterogeneous mixed agriculture on undulating topography yields valid results when compared to eddy covariance (EC). A large aperture scintillometer (LAS) over a 2.4 km path was compared with four EC stations measuring sensible (H) and latent (LvE) heat fluxes over different vegetation (cereals and grass) which when aggregated were representative of the LAS source area. The partitioning of available energy into H and LvE varied strongly for different vegetation types, with H varying by a factor of three between senesced winter wheat and grass pasture. The LAS derived H agrees (one-to-one within the experimental uncertainty) with H aggregated from EC with a high coefficient of determination of 0.94. Chronological analysis shows individual fields may have a varying contribution to the areal average sensible heat flux on short (weekly) time scales due to phenological development and changing soil moisture conditions. Using spatially aggregated measurements of net radiation and soil heat flux with H from the LAS, the areal averaged latent heat flux (LvELAS) was calculated as the residual of the surface energy balance. The regression of LvELAS against aggregated LvE from the EC stations has a slope of 0.94, close to ideal, and demonstrates that this is an accurate method for the landscape-scale estimation of evaporation over heterogeneous complex topography.
Resumo:
Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.