110 resultados para Window Coupler
Resumo:
A wind catcher/tower natural ventilation system was installed in a seminar room in the building of the School of Construction Management and Engineering, the University of Reading in the UK . Performance was analysed by means of ventilation tracer gas measurements, indoor climate measurements (temperature, humidity, CO2) and occupant surveys. In addition, the potential of simple design tools was evaluated by comparing observed ventilation results with those predicted by an explicit ventilation model and the AIDA implicit ventilation model. To support this analysis, external climate parameters (wind speed and direction, solar radiation, external temperature and humidity) were also monitored. The results showed the chosen ventilation design provided a substantially greater ventilation rate than an equivalent area of openable window. Also air quality parameters stayed within accepted norms while occupants expressed general satisfaction with the system and with comfort conditions. Night cooling was maximised by using the system in combination with openable windows. Comparisons of calculations with ventilation rate measurements showed that while AIDA gave reasonably correlated results with the monitored performance results, the widely used industry explicit model was found to over estimate the monitored ventilation rate.
Resumo:
Models of perceptual decision making often assume that sensory evidence is accumulated over time in favor of the various possible decisions, until the evidence in favor of one of them outweighs the evidence for the others. Saccadic eye movements are among the most frequent perceptual decisions that the human brain performs. We used stochastic visual stimuli to identify the temporal impulse response underlying saccadic eye movement decisions. Observers performed a contrast search task, with temporal variability in the visual signals. In experiment 1, we derived the temporal filter observers used to integrate the visual information. The integration window was restricted to the first similar to 100 ms after display onset. In experiment 2, we showed that observers cannot perform the task if there is no useful information to distinguish the target from the distractor within this time epoch. We conclude that (1) observers did not integrate sensory evidence up to a criterion level, (2) observers did not integrate visual information up to the start of the saccadic dead time, and (3) variability in saccade latency does not correspond to variability in the visual integration period. Instead, our results support a temporal filter model of saccadic decision making. The temporal impulse response identified by our methods corresponds well with estimates of integration times of V1 output neurons.
Resumo:
The objective of this study was to compare performance on different versions of the running span task, and to examine the relationship between task performance and tests of episodic memory and executive function. We found that the average capacity of the running span was approximately 4 digits, and at long sequence lengths, performance was no longer affected by varying the running span window. Both episodic and executive function measures correlated with short and long running spans. suggesting that a simple dissociation between immediate memory and executive processes in short and long running digit span tasks may not be warranted.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink. However, if T2 immediately follows T1, performance is often reported being as good as that at long lags-the so-called Lag-1 sparing effect. Two experiments investigated the mechanisms underlying this effect. Experiment 1 showed that, at Lag 1, requiring subjects to correctly report both identity and temporal order of targets produces relatively good performance on T2 but relatively bad performance on T1. Experiment 2 confirmed that subjects often confuse target order at short lags, especially if the two targets are equally easy to discriminate. Results suggest that, if two targets appear in close succession, they compete for attentional resources. If the two competitors are of unequal strength the stronger one is more likely to win and be reported at the expense of the other. If the two are equally strong, however, they will often be integrated into the same attentional episode and thus get both access to attentional resources. But this comes with a cost, as it eliminates information about the targets' temporal order.
Resumo:
Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset wits systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field.
Resumo:
We investigated whether it is possible to control the temporal window of attention used to rapidly integrate visual information. To study the underlying neural mechanisms, we recorded ERPs in an attentional blink task, known to elicit Lag-1 sparing. Lag-1 sparing fosters joint integration of the two targets, evidenced by increased order errors. Short versus long integration windows were induced by showing participants mostly fast or slow stimuli. Participants expecting slow speed used a longer integration window, increasing joint integration. Difference waves showed an early (200 ms post-T2) negative and a late positive modulation (390 ms) in the fast group, but not in the slow group. The modulations suggest the creation of a separate event for T2, which is not needed in the slow group, where targets were often jointly integrated. This suggests that attention can be guided by global expectations of presentation speed within tens of milliseconds.
Resumo:
When people monitor the rapid serial visual presentation (RSVP) of stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset, a phenomenon known as the attentional blink (AB). We found that overall performance in an RSVP task was impaired by a concurrent short-term memory (STM) task and, furthermore, that this effect increased when STM load was higher and when its content was more task relevant. Loading visually defined stimuli and adding articulatory suppression further impaired performance on the RSVP task, but the size of the AB over time (i.e., T1-T2 lag) remained unaffected by load or content. This suggested that at least part of the performance in an RSVP task reflects interference between competing codes within STM, as interference models have held, whereas the AB proper reflects capacity limitations in the transfer to STM, as consolidation models have claimed.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.
Resumo:
Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.
Resumo:
An automatic algorithm is derived for constructing kernel density estimates based on a regression approach that directly optimizes generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. Local regularization is incorporated into the density construction process to further enforce sparsity. Examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample Parzen window density estimate.
Resumo:
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.
Resumo:
Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKID estimate with comparable accuracy to that of the full-sample optimised PW density estimate. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A quadratic programming optimization procedure for designing asymmetric apodization windows tailored to the shape of time-domain sample waveforms recorded using a terahertz transient spectrometer is proposed. By artificially degrading the waveforms, the performance of the designed window in both the time and the frequency domains is compared with that of conventional rectangular, triangular (Mertz), and Hamming windows. Examples of window optimization assuming Gaussian functions as the building elements of the apodization window are provided. The formulation is sufficiently general to accommodate other basis functions. (C) 2007 Optical Society of America
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.