47 resultados para Wetland
Resumo:
Where are the terps in Yorkshire, or for that matter where is any other evidence of exploitation of the wetlands in the early medieval period? Archaeological evidence remains largely elusive for the period between the early fifth and the late ninth century. Among the very few sites in wetland landscapes dated to this period are the settlement of York and the middle Anglo-Saxon bridge at Skerne in the Hull valley. Sites from the free-draining soils adjacent to wetlands are more frequent, and include a monastery (Beverley), settlements (e.g. Nafferton and North Frodingham), cemeteries (e.g. Hornsea, Burton Pidsea, Hessle, North Frodingham, Swine and Stamford Bridge) and various isolated finds (recently summarised in Van de Noort and Davies 1993).
Resumo:
The notion that wetlands are among the most productive environments in the world is widely quoted, but its relationship with the exploitation of wetland ecosystems during the prehistoric and early historic period has been the subject of few investigations. The current paper discusses the primary production of different wetland habitats and its relationship to the resource potential of these habitats and their actual exploitation, using recent results from the Humber Wetlands Survey. It is argued that during the early Holocene, wetland landscapes were central to the subsistence economy and that a clear association exists between the primary productivity of wetlands and the intensity of exploitation. With the introduction of agriculture, however, wetland habitats become increasingly peripheral to the economy.
Resumo:
A sequential extraction method was utilized to analyze seven forms of P in an integrated vertical-flow constructed wetland (IVFCW) containing earthworms and different substrates. The aluminum-bound P (Al-P) content was found to be lower, and the occluded P (Oc-P) content was higher in the IVFCW. The addition of earthworms into the influent chamber of IVFCW increased the exchange P (Ex-P), iron-bound P (Fe-P), calcium bound P (Ca-P), Oc-P, detritus-bound (De-P) and organic P (Org-P) content in the influent chamber, and also enhanced P content uptake by wetland plants. A significantly positive correlation between P content of above-ground wetland plants and the Ex-P, Fe-P, Oc-P and Org-P content in the rhizosphere was found (P < 0.05), which indicated that the Ex-P, Fe-P, Oc-P and Org-P could be bio-available P. The Ex-P, Fe-P, De-P, Oc-P and Ca-P content of the influent chamber was higher where the substrate contained a mixture of Qing sand and river sand rather than only river sand. Also the IVFCW with earthworms and both Qing sand and river sand had a higher removal efficiency of P, which was related to higher P content uptake by wetland plants and P retained in IVFCW. These findings suggest that addition of earthworms in IVFCW increases the bioavailable P content, resulting in enhanced P content uptake by wetland plants.
Resumo:
An evaluation of a surviving stretch of the Abbot's Way, in the Somerset Levels and Moors, was undertaken to assess the consequences of the previous management regime and inform future management of the site. The scheduled site appeared to have been dewatered and desiccated as a consequence of tree planting and the effects of a deep, adjacent drainage ditch during the previous decade. The evaluation considered the condition of the Neolithic timbers and associated palaeoenvironmental record from three trenches and, where possible, compared the results with those obtained form the 1974 excavation (Girling, 1976). The results of this analysis suggest that the hydrological consequences of tree planting and colonization had a detrimental effect on both the condition of the timbers and insect remains. However, pollen and plant macro-fossils survived well although there was modern contamination. A trench opened outside the scheduled area. where the ground was waterlogged and supported a wet acid grassland flora, revealed similar problems of survival and condition. This almost certainly reflects a period of peat extraction and an associated seasonally fluctuating water table in the 1950s and 1960s; in fact pollen survived better in the scheduled dewatered area. These results are compared with those recovered from the Sweet Track which was evaluated in 1996. Both sites have been subject to recent tree growth but the Sweet Track has been positively managed in terms of hydrology. The most notable difference between the two sites is that insects and wood survived better at the Sweet Track sites than at the Abbot's Way. Insects seem to be a more sensitive indicator of site desiccation than plant remains. It is recommended that any programme of management of wetland for archaeology should avoid deliberate tree planting and natural scrub and woodland generation. It should also take into account past as well as present land use.
Resumo:
The improved empirical understanding of silt facies in Holocene coastal sequences provided by such as diatom, foraminifera, ostracode and testate amoebae analysis, combined with insights from quantitative stratigraphic and hydraulic simulations, has led to an inclusive, integrated model for the palaeogeomorphology, stratigraphy, lithofacies and biofacies of northwest European Holocene coastal lowlands in relation to sea-level behaviour. The model covers two general circumstances and is empirically supported by a range of field studies in the Holocene deposits of a number of British estuaries, particularly, the Severn. Where deposition was continuous over periods of centuries to millennia, and sea level fluctuated about a rising trend, the succession consists of repeated cycles of silt and peat lithofacies and biofacies in which series of transgressive overlaps (submergence sequences) alternate with series of regressive overlaps (emergence sequences) in association with the waxing and waning of tidal creek networks. Environmental and sea-level change are closely coupled, and equilibrium and secular pattern is of the kind represented ideally by a closed limit cycle. In the second circumstance, characteristic of unstable wetland shores and generally affecting smaller areas, coastal erosion ensures that episodes of deposition in the high intertidal zone last no more than a few centuries. The typical response is a series of regressive overlaps (emergence sequence) in erosively based high mudflat and salt-marsh silts that record, commonly as annual banding, exceptionally high deposition rates and a state of strong disequilibrium. Environmental change, including creek development, and sea-level movement are uncoupled. Only if deposition proceeds for a sufficiently long period, so that marshes mature, are equilibrium and close coupling regained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The conceptual and parameter uncertainty of the semi-distributed INCA-N (Integrated Nutrients in Catchments-Nitrogen) model was studied using the GLUE (Generalized Likelihood Uncertainty Estimation) methodology combined with quantitative experimental knowledge, the concept known as 'soft data'. Cumulative inorganic N leaching, annual plant N uptake and annual mineralization proved to be useful soft data to constrain the parameter space. The INCA-N model was able to simulate the seasonal and inter-annual variations in the stream-water nitrate concentrations, although the lowest concentrations during the growing season were not reproduced. This suggested that there were some retention processes or losses either in peatland/wetland areas or in the river which were not included in the INCA-N model. The results of the study suggested that soft data was a way to reduce parameter equifinality, and that the calibration and testing of distributed hydrological and nutrient leaching models should be based both on runoff and/or nutrient concentration data and the qualitative knowledge of experimentalist. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheal Jane Mine in Cornwall, UK. The plant consists of three separate systems, each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pretreatment utilised to increase the pH of the influent minewater (pH <4): lime dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pretreatment. Historical data (1994-1997) indicate median Fe reduction between 55% and 92%, sulphate removal in the range of 3-38% and removal of target metals (cadmium, copper and zinc) below detection limits, depending on pretreatment and flow rates through the system. A new model to simulate the processes and dynamics of the wetlands systems is described, as well as the application of the model to experimental data collected at the pilot plant. The model is process based, and utilises reaction kinetic approaches based on experimental microbial techniques rather than an equilibrium approach to metal precipitation. The model is dynamic and utilises numerical integration routines to solve a set of differential equations that describe the behaviour of 20 variables over the 17 pilot plant cells on a daily basis. The model outputs at each cell boundary are evaluated and compared with the measured data, and the model is demonstrated to provide a good representation of the complex behaviour of the wetland system for a wide range of variables. (C) 2004 Elsevier B.V/ All rights reserved.
Resumo:
A radiocarbon-dated multiproxy palaeoenvironmental record from the Lower Thames Valley at Hornchurch Marshes has provided a reconstruction of the timing and nature of vegetation succession against a background of Holocene climate change, relative sea level movement and human activities. The investigation recorded widespread peat formation between c. 6300 and 3900 cal. yr BP (marine ‘regression’), succeeded by evidence for marine incursion. The multiproxy analyses of these sediments, comprising pollen, Coleoptera, diatoms, and plant and wood macrofossils, have indicated significant changes in both the wetland and dryland environment, including the establishment of Alnus (Alder) carr woodland, and the decline of both Ulmus (Elm; c. 5740 cal. yr BP) and Tilia (Lime; c. 5600 cal. yr BP, and 4160–3710 cal. yr BP). The beetle faunas from the peat also suggest a thermal climate similar to that of the present day. At c. 4900 cal. yr BP, Taxus (L.; Yew) woodland colonised the peatland forming a plant community that has no known modern analogue in the UK. The precise reason, or reasons, for this event remain unclear, although changes in peatland hydrology seem most likely. The growth of Taxus on peatland not only has considerable importance for our knowledge of the vegetation history of southeast England, and NW Europe generally, but also has wider implications for the interpretation of Holocene palaeobotanical records. At c. 3900 cal. yr BP, Taxus declined on the peatland surface during a period of major hydrological change (marine incursion), an event also strongly associated with the decline of dryland woodland taxa, including Tilia and Quercus, and the appearance of anthropogenic indicators.
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.
Resumo:
Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.
Resumo:
Diffuse pollution, and the contribution from agriculture in particular, has become increasingly important as pollution from point sources has been addressed by wastewater treatment. Land management approaches, such as construction of field wetlands, provide one group of mitigation options available to farmers. Although field wetlands are widely used for diffuse pollution control in temperate environments worldwide, there is a shortage of evidence for the effectiveness and viability of these mitigation options in the UK. The Mitigation Options for Phosphorus and Sediment Project aims to make recommendations regarding the design and effectiveness of field wetlands for diffuse pollution control in UK landscapes. Ten wetlands have been built on four farms in Cumbria and Leicestershire. This paper focuses on sediment retention within the wetlands, estimated from annual sediment surveys in the first two years, and discusses establishment costs. It is clear that the wetlands are effective in trapping a substantial amount of sediment. Estimates of annual sediment retention suggest higher trapping rates at sandy sites (0.5–6 t ha�1 yr�1), compared to silty sites (0.02–0.4 t ha�1 yr�1) and clay sites (0.01–0.07 t ha�1 yr�1). Establishment costs for the wetlands ranged from £280 to £3100 and depended more on site specific factors, such as fencing and gateways on livestock farms, rather than on wetland size or design. Wetlands with lower trapping rates would also have lower maintenance costs, as dredging would be required less frequently. The results indicate that field wetlands show promise for inclusion in agri-environment schemes, particularly if capital payments can be provided for establishment, to encourage uptake of these multi-functional features.
Resumo:
We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2-5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0-9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.
Resumo:
We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.
Resumo:
Considerable debate surrounds the source of the apparently ‘anomalous’1 increase of atmospheric methane concentrations since the mid-Holocene (5,000 years ago) compared to previous interglacial periods as recorded in polar ice core records2. Proposed mechanisms for the rise in methane concentrations relate either to methane emissions from anthropogenic early rice cultivation1, 3 or an increase in natural wetland emissions from tropical4 or boreal sources5, 6. Here we show that our climate and wetland simulations of the global methane cycle over the last glacial cycle (the past 130,000 years) recreate the ice core record and capture the late Holocene increase in methane concentrations. Our analyses indicate that the late Holocene increase results from natural changes in the Earth's orbital configuration, with enhanced emissions in the Southern Hemisphere tropics linked to precession-induced modification of seasonal precipitation. Critically, our simulations capture the declining trend in methane concentrations at the end of the last interglacial period (115,000–130,000 years ago) that was used to diagnose the Holocene methane rise as unique. The difference between the two time periods results from differences in the size and rate of regional insolation changes and the lack of glacial inception in the Holocene. Our findings also suggest that no early agricultural sources are required to account for the increase in methane concentrations in the 5,000 years before the industrial era.