37 resultados para Wet Tropics
Resumo:
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.
Resumo:
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid-Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp. Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad-scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed-canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad-scale pattern emerges. 2. Differences between the modern and mid-Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south-eastern Australia some sites show a shift towards more moisture-stressed vegetation in the mid-Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm-temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture-demanding vegetation in the mid-Holocene than today. South-western Australia was slightly drier than today. The single site in north-western Australia also shows conditions drier than today in the mid-Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid-Holocene, in sites occupied today by cool-temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental-scale reconstruction of mid-Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.
Resumo:
Objective cyclone tracking applied to a 30-yr reanalysis dataset shows that cyclone development in the summer and autumn seasons is active in the tropics and extratropics and inactive in the subtropics. To understand this geographically bimodal distribution of cyclone development associated with tropical and extratropical cyclones quantitatively, the direct relationship between cyclone types and their environments are assessed by using a parameter space of environmental variables [environmental parameter space (EPS)]. The number of cyclones is analyzed in terms of two different factors: the environmental conditions favorable for cyclone development and the area size that satisfies the favorable condition. The EPS analysis is mainly conducted for two representative environmental parameters that are commonly used for cyclone analysis: potential intensity for tropical cyclones and baroclinicity for extratropical cyclones. The geographically bimodal distribution is attributed to the high sensitivity of the cyclone development to the change in the environmental fields from tropics to extratropics. In addition, the bimodal distribution is partly attributed to the rapid change in the environmental fields from tropics to extratropics. The EPS analysis also shows that other environmental parameters, including relative humidity and vertical velocity, may enhance the contrast between the tropics (extratropics) and subtropics, whereas they are not essential for determining cyclone types. The relationship between cyclones and their environments is found to be similar between the hemispheres in the EPS, although the geographical distribution, particularly the longitudinal uniformity, is markedly different between the hemispheres.
Resumo:
Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft.
Resumo:
David Arnold who retired this year as the Professor of Asian and Global History at the University of Warwick remains one of the most prolific historians of colonial medicine and modern South Asia. A founding member of the subaltern studies collective, he is considered widely as a pioneer in the histories of colonial medicine, environment, penology, hunger and famines within South Asian studies and beyond. In this interview he recalls his formative inspirations, ideological motivations and reflects critically on his earlier works, explaining various shifts as well as map- ping the possible course of future work. He talks at length about his forthcoming works on everyday technology, food and monsoon Asia. Finally, he shares with us his desire of initiating work on an ambitious project about the twin themes of poison and poverty in South Asian his- tory, beginning with the Bengal famine in the late eighteenth century and ending with the Bhopal gas tragedy of the early 1980s. This conversation provides insights into the ways in which the field of medical history in modern South Asia has been shaped over the past three decades through interactions with broader discussions on agency, resistance, power, everydayness, subal- tern studies, global and spatial histories. It hints further at the newer directions which are being opened up by such persisting intellectual entanglements.
Resumo:
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.