70 resultados para Weighted Generalised Affinity Coefficient
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
A discrete-time algorithm is presented which is based on a predictive control scheme in the form of dynamic matrix control. A set of control inputs are calculated and made available at each time instant, the actual input applied being a weighted summation of the inputs within the set. The algorithm is directly applicable in a self-tuning format and is therefore suitable for slowly time-varying systems in a noisy environment.
Resumo:
Many well-established statistical methods in genetics were developed in a climate of severe constraints on computational power. Recent advances in simulation methodology now bring modern, flexible statistical methods within the reach of scientists having access to a desktop workstation. We illustrate the potential advantages now available by considering the problem of assessing departures from Hardy-Weinberg (HW) equilibrium. Several hypothesis tests of HW have been established, as well as a variety of point estimation methods for the parameter which measures departures from HW under the inbreeding model. We propose a computational, Bayesian method for assessing departures from HW, which has a number of important advantages over existing approaches. The method incorporates the effects-of uncertainty about the nuisance parameters--the allele frequencies--as well as the boundary constraints on f (which are functions of the nuisance parameters). Results are naturally presented visually, exploiting the graphics capabilities of modern computer environments to allow straightforward interpretation. Perhaps most importantly, the method is founded on a flexible, likelihood-based modelling framework, which can incorporate the inbreeding model if appropriate, but also allows the assumptions of the model to he investigated and, if necessary, relaxed. Under appropriate conditions, information can be shared across loci and, possibly, across populations, leading to more precise estimation. The advantages of the method are illustrated by application both to simulated data and to data analysed by alternative methods in the recent literature.
Resumo:
We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves can be treated. As a further application of our results, we analyze a finite section type approximation, whereby the variational problem posed on an infinite layer is approximated by a variational problem on a bounded region.
Resumo:
The precision of quasioptical null-balanced bridge instruments for transmission and reflection coefficient measurements at millimeter and submillimeter wavelengths is analyzed. A Jones matrix analysis is used to describe the amount of power reaching the detector as a function of grid angle orientation, sample transmittance/reflectance and phase delay. An analysis is performed of the errors involved in determining the complex transmission and reflection coefficient after taking into account the quantization error in the grid angle and micrometer readings, the transmission or reflection coefficient of the sample, the noise equivalent power of the detector, the source power and the post-detection bandwidth. For a system fitted with a rotating grid with resolution of 0.017 rad and a micrometer quantization error of 1 μm, a 1 mW source, and a detector with a noise equivalent power 5×10−9 W Hz−1/2, the maximum errors at an amplitude transmission or reflection coefficient of 0.5 are below ±0.025.
Resumo:
Le filtrage de Bucy-Kalman s'applique au modèle d'état comprenant des équations linéaires bruitées, décrivant l'évolution de l'état et des équations linéaires bruitées d'observation . Ce filtrage consiste dans le cas gaussien, à calculer de façon récursive, la loi de probabilité, a posteriori, de l'état, au vu de l' observation actuelle et des observations passées . Le filtrage par densités approchées permet de traiter des équations d'état, non linéaires ou à bruits non Gaussiens. Pour un coefficient de rappel aléatoire, cas typique d'une situation de changements de modèles, l'article introduit une famille de lois de probabilité, paramétrées, bimodales servant, par ajustement des paramètres, à approcher les lois a posteriori de l'état aux divers instants . Les paramètres sont recalculés récursivement, lors des mises à jour et des prédictions.
Resumo:
We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.
Resumo:
In this paper we study generalised prime systems for which the integer counting function NP(x) is asymptotically well behaved, in the sense that NP(x)=ρx+O(xβ), where ρ is a positive constant and . For such systems, the associated zeta function ζP(s) is holomorphic for . We prove that for , for any ε>0, and also for ε=0 for all such σ except possibly one value. The Dirichlet divisor problem for generalised integers concerns the size of the error term in NkP(x)−Ress=1(ζPk(s)xs/s), which is O(xθ) for some θ<1. Letting αk denote the infimum of such θ, we show that .
Resumo:
We study generalised prime systems (both discrete and continuous) for which the `integer counting function' N(x) has the property that N(x) ¡ cx is periodic for some c > 0. We show that this is extremely rare. In particular, we show that the only such system for which N is continuous is the trivial system with N(x) ¡ cx constant, while if N has finitely many discontinuities per bounded interval, then N must be the counting function of the g-prime system containing the usual primes except for finitely many. Keywords and phrases: Generalised prime systems. I
Resumo:
Mannose-binding C-type lectin receptors, expressed on Langerhans cells and subepithelial dendritic cells (DCs) of cervico-vaginal tissues, play an important role in HIV-1 capture and subsequent dissemination to lymph nodes. DC-SIGN has been implicated in both productive infection of DCs and the DC-mediated trans infection of CD4(+) T cells that occurs in the absence of replication. However, the molecular events that underlie this efficient transmission have not been fully defined. In this study, we have examined the effect of the extracellular domains of DC-SIGN and Langerin on the stability of the interaction of the HIV-1 envelope glycoprotein with CD4 and also on replication in permissive cells. Surface plasmon resonance analysis showed that DC-SIGN increases the binding affinity of trimeric gp140 envelope glycoproteins to CD4. In contrast, Langerin had no effect on the stability of the gp140:CD4 complex. In vitro infection experiments to compare DC-SIGN enhancement of CD4-dependent and CD4-independent strains demonstrated significantly lower enhancement of the CD4-independent strain. In addition DC-SIGN increased the relative rate of infection of the CD4-dependent strain but had no effect on the CD4-independent strain. DC-SIGN binding to the HIV envelope protein effectively increases exposure of the CD4 binding site, which in turn contributes to enhancement of infection.