44 resultados para WSN localizzazione indoor Rfid ZigBee Bluetooth UWB UHF
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
Mobile devices are attractive media for directly communicating with consumers who have become busier and more difficult to reach. While SMS (short message service) advertising has received some attention in the literature, Bluetooth-enabled advertising is still unexplored. This research aims to investigate younger consumers’ acceptance of Bluetooth-delivered advertising. Although the majority of the respondents were willing to accept this form of advertising, they needed both to be in control of the frequency with which they receive messages and also to be reassured that the medium could ensure privacy and security. The research further indicated that peers influence the acceptance of Bluetooth-driven advertising.
Resumo:
The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.
Resumo:
Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS
Resumo:
An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L−1) compared to the α- and β-isomers (45 and 15 μg L−1 respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora – which may act enantioselectively – are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32–58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.
Resumo:
Although early modern acting companies were adept at using different kinds of venue, performing indoors imposed a significant change in practice. Since indoor theatres required artificial lighting to augment the natural light admitted via windows, candles were employed; but the technology was such that candles could not last untended throughout an entire performance. Performing indoors thus introduced a new component into stage practice: the interval. This article explores what extant evidence (such as it is) might tell us about the introduction of act breaks, how they may have worked, and the implications for actors, audiences and dramatists. Ben Jonson's scripting of the interval in two late plays, The Staple of News and The Magnetic Lady, is examined for what it may suggest about actual practice, and the ways in which the interval may have been considered integral to composition and performance is explored through a reading of Middleton and Rowley's The Changeling. The interval offered playwrights a form of structural punctuation, drawing attention to how acts ended and began; actors could use the space to bring on props for use in the next act; spectators might use the pause between acts to reflect on what had happened and, perhaps, anticipate what was to come; and stage-sitters, the evidence indicates, often took advantage of the hiatus in the play to assert their presence in the space to which all eyes naturally were drawn.
Resumo:
Designing for indoor thermal environmental conditions is one of the key elements in the energy efficient building design process. This paper introduces a development of the Chinese national Evaluation Standard for indoor thermal environments (Evaluation Standard). International standards including the ASHRAE55, ISO7730, DIN EN, and CIBSE Guide-A have been reviewed and referenced for the development of the Evaluation Standard. In addition, over 28,000 subjects participated in the field study from different climate zones in China and over 500 subjects have been involved in laboratory studies. The research findings reveal that there is a need to update the Chinese thermal comfort standard based on local climates and people's habitats. This paper introduces in detail the requirements for the thermal environment for heated and cooled buildings and free-running buildings in China.
Resumo:
We consider indoors communications networks using modulated LEDs to transmit the information packets. A generic indoor channel equalization formulation is proposed assuming the existence of both line of sight and diffuse emitters. The proposed approach is of relevance to emergent indoors distributed sensing modalities for which various lighting based network communications protocols are considered.
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.
Resumo:
Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.
Resumo:
Demand for good indoor air quality is increasing as people recorgnise the risks to their health and productivity from indoor pollutants. There is a tendency to reduce ventilation rates to ensure energy conservation in buildings; in this instance schools. However, evidence reviewed shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area (1.8 - 2.4m2/person); eventually indicating that carbon dioxide (CO2) levels can rise to very high levels in classroom occupancy periods. A preliminary study to investigate the impact of indoor environmental parameters has been performed in a secondary school classroom in Pretoria, South Africa. Factors monitored include temperature, relative humidity, lighting, air velocities and CO2 concentrations. From the results low air velocities are recorded (i.e. 0.1-0.3m/s) impacting on the retention of CO2 build-up in the classroom. Results presented in this paper are the initial findings of ongoing research.