38 resultados para Vehicle occupancy.
Resumo:
The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.
Resumo:
The recent roll-out of smart metering technologies in several developed countries has intensified research on the impacts of Time-of-Use (TOU) pricing on consumption. This paper analyses a TOU dataset from the Province of Trento in Northern Italy using a stochastic adjustment model. Findings highlight the non-steadiness of the relationship between consumption and TOU price. Weather and active occupancy can partly explain future consumption in relation to price.
Resumo:
Currently UK fruit and vegetable intakes are below recommendations. Bread is a staple food consumed by ~95% of adults in western countries. In addition, bread provides an ideal matrix by which functionality can be delivered to the consumer in an accepted food. Therefore, enriching bread with vegetables may be an effective strategy to increase vegetable consumption. This study evaluated consumer acceptance, purchase intent and intention of product replacement of bread enriched with red beetroot, carrot with coriander, red pepper with tomato or white beetroot (80g vegetable per serving of 200g) compared to white control bread (0g vegetable). Consumers (n=120) rated their liking of the breads overall, as well as their liking of appearance, flavour and texture using nine-point hedonic scales. Product replacement and purchase intent of the breads was rated using five-point scales. The effect of providing consumers with health information about the breads was also evaluated. There were significant differences in overall liking (P<0.0001), as well as liking of appearance (P<0.0001), flavour (P=0.0002) and texture (P=0.04), between the breads. However, the significant differences resulted from the red beetroot bread which was significantly (P<0.05) less liked compared to control bread. There were no significant differences in overall liking between any of the other vegetable-enriched breads compared with the control bread (no vegetable inclusion), apart from the red beetroot bread which was significantly less liked. The provision of health information about the breads did not increase consumer liking of the vegetable-enriched breads. In conclusion, this study demonstrated that vegetable-enriched bread appeared to be an acceptable strategy to increase vegetable intake, however, liking depended on vegetable type.
Resumo:
Almost all modern cars can be controlled remotely using a personal communicator (keyfob). However, the degree of interaction between currently available personal communicators and cars is very limited. The communication link is unidirectional and the communication range is limited to a few dozen meters. However, there are many interesting applications that could be supported if a keyfob would be able to support energy efficient bidirectional longer range communication. In this paper we investigate off-the-shelf transceivers in terms of their usability for bidirectional longer range communication. Our evaluation results show that existing transceivers can generally support the required communication ranges but that links tend to be very unreliable. This high unreliability must be handled in an energy efficient way by the keyfob to car communication protocol in order to make off-the-shelf transceivers a viable solution.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
This paper addresses the challenging domain of vehicle classification from pole-mounted roadway cameras, specifically from side-profile views. A new public vehicle dataset is made available consisting of over 10000 side profile images (86 make/model and 9 sub-type classes). 5 state-of-the-art classifiers are applied to the dataset, with the best achieving high classification rates of 98.7% for sub-type and 99.7- 99.9% for make and model recognition, confirming the assertion made that single vehicle side profile images can be used for robust classification.
Resumo:
The chapter is part of a book which has contributors from interior architecture education across the world. New Occupancy refers to the re use of existing structures in educational environments and how they can be successfully adapted and reinvented to accommodate new client requirements and also create exciting stimulating learning environments.