80 resultados para Urban structuring and restructuring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a water balance modelling framework, this paper analyses the effects of urban design on the water balance, with a focus on evapotranspiration and storm water. First, two quite different urban water balance models are compared: Aquacycle which has been calibrated for a suburban catchment in Canberra, Australia, and the single-source urban evapotranspiration-interception scheme (SUES), an energy-based approach with a biophysically advanced representation of interception and evapotranspiration. A fair agreement between the two modelled estimates of evapotranspiration was significantly improved by allowing the vegetation cover (leaf area index, LAI) to vary seasonally, demonstrating the potential of SUES to quantify the links between water sensitive urban design and microclimates and the advantage of comparing the two modelling approaches. The comparison also revealed where improvements to SUES are needed, chiefly through improved estimates of vegetation cover dynamics as input to SUES, and more rigorous parameterization of the surface resistance equations using local-scale suburban flux measurements. Second, Aquacycle is used to identify the impact of an array of water sensitive urban design features on the water balance terms. This analysis confirms the potential to passively control urban microclimate by suburban design features that maximize evapotranspiration, such as vegetated roofs. The subsequent effects on daily maximum air temperatures are estimated using an atmospheric boundary layer budget. Potential energy savings of about 2% in summer cooling are estimated from this analysis. This is a clear ‘return on investment’ of using water to maintain urban greenspace, whether as parks distributed throughout an urban area or individual gardens or vegetated roofs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urbanization is one of the major forms of habitat alteration occurring at the present time. Although this is typically deleterious to biodiversity, some species flourish within these human-modified landscapes, potentially leading to negative and/or positive interactions between people and wildlife. Hence, up-to-date assessment of urban wildlife populations is important for developing appropriate management strategies. Surveying urban wildlife is limited by land partition and private ownership, rendering many common survey techniques difficult. Garnering public involvement is one solution, but this method is constrained by the inherent biases of non-standardised survey effort associated with voluntary participation. We used a television-led media approach to solicit national participation in an online sightings survey to investigate changes in the distribution of urban foxes in Great Britain and to explore relationships between urban features and fox occurrence and sightings density. Our results show that media-based approaches can generate a large national database on the current distribution of a recognisable species. Fox distribution in England and Wales has changed markedly within the last 25 years, with sightings submitted from 91% of urban areas previously predicted to support few or no foxes. Data were highly skewed with 90% of urban areas having <30 fox sightings per 1000 people km-2. The extent of total urban area was the only variable with a significant impact on both fox occurrence and sightings density in urban areas; longitude and percentage of public green urban space were respectively, significantly positively and negatively associated with sightings density only. Latitude, and distance to nearest neighbouring conurbation had no impact on either occurrence or sightings density. Given the limitations associated with this method, further investigations are needed to determine the association between sightings density and actual fox density, and variability of fox density within and between urban areas in Britain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of atmospheric conditions and processes in citiesare fundamental to understanding the interactions between the urban surface and weather/climate, improving the performance of urban weather, air quality and climate models, and providing key information for city end-users (e.g. decision-makers, stakeholders, public). In this paper, Shanghai's urban integrated meteorological observation network (SUIMON) and some examples of intended applications are introduced. Its characteristics include being: multi- purpose (e.g. forecast, research, service), multi-function (high impact weather, city climate, special end-users), multi-scale (e.g. macro/meso-, urban-, neighborhood, street canyon), multi-variable (e.g. thermal, dynamic, chemical, bio-meteorological, ecological), and multi- platform (e.g. radar, wind profiler, ground-based, satellite based, in-situ observation/ sampling). Underlying SUIMON is a data management system to facilitate exchange of data and information. The overall aim of the network is to improve coordination strategies and instruments; to identify data gaps based on science and user driven requirements; and to intelligently combine observations from a variety of platforms by using a data assimilation system that is tuned to produce the best estimate of the current state of the urban atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urban boundary layer (UBL) is the part of the atmosphere in which most of the planet’s population now lives, and is one of the most complex and least understood microclimates. Given potential climate change impacts and the requirement to develop cities sustainably, the need for sound modelling and observational tools becomes pressing. This review paper considers progress made in studies of the UBL in terms of a conceptual framework spanning microscale to mesoscale determinants of UBL structure and evolution. Considerable progress in observing and modelling the urban surface energy balance has been made. The urban roughness sub-layer is an important region requiring attention as assumptions about atmospheric turbulence break down in this layer and it may dominate coupling of the surface to the UBL due to its considerable depth. The upper 90% of the UBL (mixed and residual layers) remains under-researched but new remote sensing methods and high resolution modelling tools now permit rapid progress. Surface heterogeneity dominates from neighbourhood to regional scales and should be more strongly considered in future studies. Specific research priorities include humidity within the UBL, high-rise urban canopies and the development of long-term, spatially extensive measurement networks coupled strongly to model development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores the role of women's inheritance and ownership of property in urban Senegal. It shows how being able to inherit and own property promotes the economic and emotional security of widows and their children in urban areas, and discusses the challenges posed by legal pluralism in working on poverty alleviation and social protection in the city.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs’ four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs’ four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs’ conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from the first international urban model comparison experiment (PILPS-Urban) suggested that models which neglected the anthropogenic heat flux within the surface energy balance performed at least as well as models that include the source term, but this could not be explained. The analyses undertaken show that the results from PILPS-Urban were masked by the signal from including vegetation, which was identified in PILPS-Urban as being important. Including the anthropogenic heat flux does give improved performance, but the benefit is small for the site studied given the relatively small magnitude of this flux relative to other terms in the surface energy balance. However, there is no further benefit from including temporal variations in the flux at this site. The importance is expected to increase at sites with a larger anthropogenic heat flux and greater temporal variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter considers aspects of urban design and associated identity of place that shifts over time and has to identify with aspects of economic pressures to develop as well as cultural concerns about change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient concentrations of trace elements with 2 h time resolution were measured in PM10–2.5, PM2.5–1.0 and PM1.0–0.3 size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 10.4 to 16.6 for SW winds (3.3–6.9 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.7 to 8.2 for SW (2.6–3.0 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM10–2.5 mass fraction, roughly twice that of the PM1.0–0.3 fraction. These elements also showed the highest urban increments (~ 3.0), although no difference was observed between brake wear and other traffic-related elements. All elements influenced by traffic exhibited higher concentrations during morning and evening rush hours, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Si, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (3.4–5.4 for SW, 1.7–2.3 for NE) and urban (~ 2) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM10–2.5 sea salt (factor of up to 2), which may be influenced by traffic-induced resuspension of sea and/or road salt. Heavy-duty vehicles appeared to have a larger effect than passenger vehicles on the concentrations of all elements influenced by resuspension (including sea salt) and wearing processes. Trace element concentrations in London were influenced by both local and regional sources, with coarse and intermediate fractions dominated by traffic-induced resuspension and wearing processes and fine particles influenced by regional transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban flood inundation models require considerable data for their parameterisation, calibration and validation. TerraSAR-X should be suitable for urban flood detection because of its high resolution in stripmap/spotlight modes. The paper describes ongoing work on a project to assess how well TerraSAR-X can detect flooded regions in urban areas, and how well these can constrain the parameters of an urban flood model. The study uses a TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK , in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with LiDAR data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and vegetation. An algorithm for the delineation of flood water in urban areas is described, together with its validation using the aerial photographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban land surface schemes have been developed to model the distinct features of the urban surface and the associated energy exchange processes. These models have been developed for a range of purposes and make different assumptions related to the inclusion and representation of the relevant processes. Here, the first results of Phase 2 from an international comparison project to evaluate 32 urban land surface schemes are presented. This is the first large-scale systematic evaluation of these models. In four stages, participants were given increasingly detailed information about an urban site for which urban fluxes were directly observed. At each stage, each group returned their models' calculated surface energy balance fluxes. Wide variations are evident in the performance of the models for individual fluxes. No individual model performs best for all fluxes. Providing additional information about the surface generally results in better performance. However, there is clear evidence that poor choice of parameter values can cause a large drop in performance for models that otherwise perform well. As many models do not perform well across all fluxes, there is need for caution in their application, and users should be aware of the implications for applications and decision making.