49 resultados para Upper Scorpius
Resumo:
Analysis of observed ozone profiles in Northern Hemisphere low and middle latitudes reveals the seasonal persistence of ozone anomalies in both the lower and upper stratosphere. Principal component analysis is used to detect that above 16 hPa the persistence is strongest in the latitude band 15–45°N, while below 16 hPa the strongest persistence is found over 45–60°N. In both cases, ozone anomalies persist through the entire year from November to October. The persistence of ozone anomalies in the lower stratosphere is presumably related to the wintertime ozone buildup with subsequent photochemical relaxation through summer, as previously found for total ozone. The persistence in the upper stratosphere is more surprising, given the short lifetime of Ox at these altitudes. It is hypothesized that this “seasonal memory” in the upper stratospheric ozone anomalies arises from the seasonal persistence of transport-induced wintertime NOy anomalies, which then perturb the ozone chemistry throughout the rest of the year. This hypothesis is confirmed by analysis of observations of NO2, NOx, and various long-lived trace gases in the upper stratosphere, which are found to exhibit the same seasonal persistence. Previous studies have attributed much of the year-to-year variability in wintertime extratropical upper stratospheric ozone to the Quasi-Biennial Oscillation (QBO) through transport-induced NOy (and hence NO2) anomalies but have not identified any statistical connection between the QBO and summertime ozone variability. Our results imply that through this “seasonal memory,” the QBO has an asynchronous effect on ozone in the low to midlatitude upper stratosphere during summer and early autumn.
Resumo:
In this study a gridded hourly 1-km precipitation dataset for a meso-scale catchment (4,062 km2) of the Upper Severn River, UK was constructed using rainfall radar data to disaggregate a daily precipitation (rain gauge) dataset. The dataset was compared to an hourly precipitation dataset created entirely from rainfall radar data. Results found that when assessed against gauge readings and as input to the Lisflood-RR hydrological model, the rain gauge/radar disaggregated dataset performed the best suggesting that this simple method of combining rainfall radar data with rain gauge readings can provide temporally detailed precipitation datasets for calibrating hydrological models.
Resumo:
A method of classifying the upper tropospheric/lower stratospheric (UTLS) jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL) coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS) satellite and the Winter Storms aircraft datasets in jet coordinates thus emphasizes different aspects of the circulation compared to an EqL-coordinate framework: the jet coordinate reorders the data geometrically, thus highlighting the strong PV, tropopause height and trace gas gradients across the subtropical jet, whereas EqL is a dynamical coordinate that may blur these spatial relationships but provides information on irreversible transport. The jet coordinate view identifies the concentration of stratospheric ozone well below the tropopause in the region poleward of and below the jet core, as well as other transport features associated with the upper tropospheric jets. Using the jet information in EqL coordinates allows us to study trace gas distributions in regions of weak versus strong jets, and demonstrates weaker transport barriers in regions with less jet influence. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.
Resumo:
An unusually strong and prolonged stratospheric sudden warming (SSW) in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) data, the SLIMCAT Chemistry Transport Model (CTM), and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied) in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results primarily from biases in the diabatic descent in assimilated analyses.
Resumo:
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature-equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
Resumo:
Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes
Resumo:
Medium range flood forecasting activities, driven by various meteorological forecasts ranging from high resolution deterministic forecasts to low spatial resolution ensemble prediction systems, share a major challenge in the appropriateness and design of performance measures. In this paper possible limitations of some traditional hydrological and meteorological prediction quality and verification measures are identified. Some simple modifications are applied in order to circumvent the problem of the autocorrelation dominating river discharge time-series and in order to create a benchmark model enabling the decision makers to evaluate the forecast quality and the model quality. Although the performance period is quite short the advantage of a simple cost-loss function as a measure of forecast quality can be demonstrated.
Resumo:
We present a case study using the TIGGE database for flood warning in the Upper Huai catchment (ca. 30 672 km2). TIGGE ensemble forecasts from 6 meteorological centres with 10-day lead time were extracted and disaggregated to drive the Xinanjiang model to forecast discharges for flood events in July-September 2008. The results demonstrated satisfactory flood forecasting skills with clear signals of floods up to 10 days in advance. The forecasts occasionally show discrepancies both in time and space. Forecasting quality could potentially be improved by using temporal and spatial corrections of the forecasted precipitation.
Resumo:
This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.
Resumo:
Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols obtained during a balloon flight to an altitude of 24 km. The measurements were per- formed with an improved version of the Stratospheric and Tropospheric Aerosol Counter (STAC) aerosol counter dedi- cated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. Conversely, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol–ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. However, the model cannot reproduce the absence of electrification found in the lower stratosphere, as the processes leading to neutralisation in this altitude range are unknown. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation
Resumo:
A global climatology (1979–2012) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) shows distributions and seasonal evolution of upper tropospheric jets and their relationships to the stratospheric subvortex and multiple tropopauses. The overall climatological patterns of upper tropospheric jets confirm those seen in previous studies, indicating accurate representation of jet stream dynamics in MERRA. The analysis shows a Northern Hemisphere (NH) upper tropospheric jet stretching nearly zonally from the mid-Atlantic across Africa and Asia. In winter–spring, this jet splits over the eastern Pacific, merges again over eastern North America, and then shifts poleward over the North Atlantic. The jets associated with tropical circulations are also captured, with upper tropospheric westerlies demarking cyclonic flow downstream from the Australian and Asian monsoon anticyclones and associated easterly jets. Multiple tropopauses associated with the thermal tropopause “break” commonly extend poleward from the subtropical upper tropospheric jet. In Southern Hemisphere (SH) summer, the tropopause break, along with a poleward-stretching secondary tropopause, often occurs across the tropical westerly jet downstream of the Australian monsoon region. SH high-latitude multiple tropopauses, nearly ubiquitous in June–July, are associated with the unique polar winter thermal structure. High-latitude multiple tropopauses in NH fall–winter are, however, sometimes associated with poleward-shifted upper tropospheric jets. The SH subvortex jet extends down near the level of the subtropical jet core in winter and spring. Most SH subvortex jets merge with an upper tropospheric jet between May and December; although much less persistent than in the SH, merged NH subvortex jets are common between November and April.
Resumo:
We present the first comprehensive intercomparison of currently available satellite ozone climatologies in the upper troposphere/lower stratosphere (UTLS) (300–70 hPa) as part of the Stratosphere-troposphere Processes and their Role in Climate (SPARC) Data Initiative. The Tropospheric Emission Spectrometer (TES) instrument is the only nadir-viewing instrument in this initiative, as well as the only instrument with a focus on tropospheric composition. We apply the TES observational operator to ozone climatologies from the more highly vertically resolved limb-viewing instruments. This minimizes the impact of differences in vertical resolution among the instruments and allows identification of systematic differences in the large-scale structure and variability of UTLS ozone. We find that the climatologies from most of the limb-viewing instruments show positive differences (ranging from 5 to 75%) with respect to TES in the tropical UTLS, and comparison to a “zonal mean” ozonesonde climatology indicates that these differences likely represent a positive bias for p ≤ 100 hPa. In the extratropics, there is good agreement among the climatologies regarding the timing and magnitude of the ozone seasonal cycle (differences in the peak-to-peak amplitude of <15%) when the TES observational operator is applied, as well as very consistent midlatitude interannual variability. The discrepancies in ozone temporal variability are larger in the tropics, with differences between the data sets of up to 55% in the seasonal cycle amplitude. However, the differences among the climatologies are everywhere much smaller than the range produced by current chemistry-climate models, indicating that the multiple-instrument ensemble is useful for quantitatively evaluating these models.
Resumo:
Multi-proxy analyses from floodplain deposits in the Colne Valley, southern England, have provided a palaeoenvironmental context for the immediately adjacent Terminal Upper Palaeolithic and Early Mesolithic site of Three Ways Wharf. These deposits show the transition from an open cool environment to fully developed heterogeneous floodplain vegetation during the Early Mesolithic. Several distinct phases of burning are shown to have occurred that are chronologically contemporary with the local archaeological record. The floodplain itself is shown to have supported a number of rare Urwaldrelikt insect species implying human manipulation of the floodplain at this time must have been limited or episodic. By the Late Mesolithic a reed-sedge swamp had developed across much of the floodplain, within which repeated burning of the in situ vegetation took place. This indicates deliberate land management practices utilising fire, comparable with findings from other floodplain sequences in southern Britain. With similar sedimentary sequences known to exist across the Colne Valley, often closely associated with contemporary archaeology, the potential for placing the archaeological record within a spatially explicit palaeoenvironmental context is great.