36 resultados para Unit hypercube
Resumo:
A representation of the conformal mapping g of the interior or exterior of the unit circle onto a simply-connected domain Ω as a boundary integral in terms ofƒ|∂Ω is obtained, whereƒ :=g -l. A product integration scheme for the approximation of the boundary integral is described and analysed. An ill-conditioning problem related to the domain geometry is discussed. Numerical examples confirm the conclusions of this discussion and support the analysis of the quadrature scheme.
Resumo:
The objective of this paper is to apply the mis-specification (M-S) encompassing perspective to the problem of choosing between linear and log-linear unit-root models. A simple M-S encompassing test, based on an auxiliary regression stemming from the conditional second moment, is proposed and its empirical size and power are investigated using Monte Carlo simulations. It is shown that by focusing on the conditional process the sampling distributions of the relevant statistics are well behaved under both the null and alternative hypotheses. The proposed M-S encompassing test is illustrated using US total disposable income quarterly data.
Resumo:
Many key economic and financial series are bounded either by construction or through policy controls. Conventional unit root tests are potentially unreliable in the presence of bounds, since they tend to over-reject the null hypothesis of a unit root, even asymptotically. So far, very little work has been undertaken to develop unit root tests which can be applied to bounded time series. In this paper we address this gap in the literature by proposing unit root tests which are valid in the presence of bounds. We present new augmented Dickey–Fuller type tests as well as new versions of the modified ‘M’ tests developed by Ng and Perron [Ng, S., Perron, P., 2001. LAG length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554] and demonstrate how these tests, combined with a simulation-based method to retrieve the relevant critical values, make it possible to control size asymptotically. A Monte Carlo study suggests that the proposed tests perform well in finite samples. Moreover, the tests outperform the Phillips–Perron type tests originally proposed in Cavaliere [Cavaliere, G., 2005. Limited time series with a unit root. Econometric Theory 21, 907–945]. An illustrative application to U.S. interest rate data is provided
Resumo:
This paper proposes a set of well defined steps to design functional verification monitors intended to verify Floating Point Units (FPU) described in HDL. The first step consists on defining the input and output domain coverage. Next, the corner cases are defined. Finally, an already verified reference model is used in order to test the correctness of the Device Under Verification (DUV). As a case study a monitor for an IEEE754-2008 compliant design is implemented. This monitor is built to be easily instantiated into verification frameworks such as OVM. Two different designs were verified reaching complete input coverage and successful compliant results.
Resumo:
The Hugh Sinclair Unit of Human Nutrition (HSUHN) at the University of Reading was founded in October 1995 with the appointment of Christine Williams OBE as the first Hugh Sinclair Chair in Human Nutrition. This was made possible by the competitively won funds from the estate and legacy of the late Professor Hugh Macdonald Sinclair (1910–1990). The vision for the newly established HSUHN was to ‘strengthen the evidence base for dietary recommendations for prevention of degenerative chronic diseases’. This has remained the research focus of the HSUHN under the leadership of Professors Christine Williams (1995–2005), Ian Rowland (2006–2013) and Julie Lovegrove (2014-present). Our mission is to improve population health and evaluate mechanisms of action for the effects of dietary components on health, which reflects Hugh Sinclair’s life ambition within nutritional science. Over the past 20 years, the HSUHN has developed an international reputation within the nutrition science community, and in recognition of the 20th anniversary, this paper highlights Hugh Sinclair’s contributions to the field of nutrition and key research achievements by members of the Unit.