129 resultados para Unified Model Reference


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Well-resolved air–sea interactions are simulated in a new ocean mixed-layer, coupled configuration of the Met Office Unified Model (MetUM-GOML), comprising the MetUM coupled to the Multi-Column K Profile Parameterization ocean (MC-KPP). This is the first globally coupled system which provides a vertically resolved, high near-surface resolution ocean at comparable computational cost to running in atmosphere-only mode. As well as being computationally inexpensive, this modelling framework is adaptable– the independent MC-KPP columns can be applied selectively in space and time – and controllable – by using temperature and salinity corrections the model can be constrained to any ocean state. The framework provides a powerful research tool for process-based studies of the impact of air–sea interactions in the global climate system. MetUM simulations have been performed which separate the impact of introducing inter- annual variability in sea surface temperatures (SSTs) from the impact of having atmosphere–ocean feedbacks. The representation of key aspects of tropical and extratropical variability are used to assess the performance of these simulations. Coupling the MetUM to MC-KPP is shown, for example, to reduce tropical precipitation biases, improve the propagation of, and spectral power associated with, the Madden–Julian Oscillation and produce closer-to-observed patterns of springtime blocking activity over the Euro-Atlantic region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The latest coupled configuration of the Met Office Unified Model (Global Coupled configuration 2, GC2) is presented. This paper documents the model components which make up the configuration (although the scientific description of these components is detailed elsewhere) and provides a description of the coupling between the components. The performance of GC2 in terms of its systematic errors is assessed using a variety of diagnostic techniques. The configuration is intended to be used by the Met Office and collaborating institutes across a range of timescales, with the seasonal forecast system (GloSea5) and climate projection system (HadGEM) being the initial users. In this paper GC2 is compared against the model currently used operationally in those two systems. Overall GC2 is shown to be an improvement on the configurations used currently, particularly in terms of modes of variability (e.g. mid-latitude and tropical cyclone intensities, the Madden–Julian Oscillation and El Niño Southern Oscillation). A number of outstanding errors are identified with the most significant being a considerable warm bias over the Southern Ocean and a dry precipitation bias in the Indian and West African summer monsoons. Research to address these is ongoing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the development and basic evaluation of decadal predictions produced using the HiGEM coupled climate model. HiGEM is a higher resolution version of the HadGEM1 Met Office Unified Model. The horizontal resolution in HiGEM has been increased to 1.25◦ × 0.83◦ in longitude and latitude for the atmosphere, and 1/3◦ × 1/3◦ globally for the ocean. The HiGEM decadal predictions are initialised using an anomaly assimilation scheme that relaxes anomalies of ocean temperature and salinity to observed anomalies. 10 year hindcasts are produced for 10 start dates (1960, 1965,..., 2000, 2005). To determine the relative contributions to prediction skill from initial conditions and external forcing, the HiGEM decadal predictions are compared to uninitialised HiGEM transient experiments. The HiGEM decadal predictions have substantial skill for predictions of annual mean surface air temperature and 100 m upper ocean temperature. For lead times up to 10 years, anomaly correlations (ACC) over large areas of the North Atlantic Ocean, the Western Pacific Ocean and the Indian Ocean exceed values of 0.6. Initialisation of the HiGEM decadal predictions significantly increases skill over regions of the Atlantic Ocean,the Maritime Continent and regions of the subtropical North and South Pacific Ocean. In particular, HiGEM produces skillful predictions of the North Atlantic subpolar gyre for up to 4 years lead time (with ACC > 0.7), which are significantly larger than the uninitialised HiGEM transient experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is often assumed that ventilation of the atmospheric boundary layer is weak in the absence of fronts, but is this always true? In this paper we investigate the processes responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May 2005 using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, turbulent mixing followed by large-scale ascent, a sea breeze circulation and coastal outflow. Vertical distributions of tracer are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. Coastal outflow and the sea breeze circulation were found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2 km. A combination of coastal outflow, the sea breeze circulation, turbulent mixing and large-scale ascent ventilated 46% of the boundary layer tracer, of which 10% was above 2 km. Finally, coastal outflow, the sea breeze circulation, turbulent mixing, large-scale ascent and shallow convection together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2 km. Hence this study shows that significant ventilation of the boundary layer can occur in the absence of fronts (and thus during high-pressure events). Turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The life-cycle of shallow frontal waves and the impact of deformation strain on their development is investigated using the idealised version of the Met Office non-hydrostatic Unified Model which includes the same physics and dynamics as the operational forecast model. Frontal wave development occurs in two stages; first, a deformation strain is applied to a front and a positive potential vorticity (PV) strip forms, generated by latent heat release in the frontal updraft; second, as the deformation strain is reduced the PV strip breaks up into individual anomalies. The circulations associated with the PV anomalies cause shallow frontal waves to form. The structure of the simulated frontal waves is consistent with the conceptual model of a frontal cyclone. Deeper frontal waves are simulated if the stability of the atmosphere is reduced. Deformation strain rates of different strengths are applied to the PV strip to determine whether a deformation strain threshold exists above which frontal wave development is suppressed. An objective method of frontal wave activity is defined and frontal wave development was found to be suppressed by deformation strain rates $\ge 0.4\times10^{-5}\mbox{s}^{-1}$. This value compares well with observed deformation strain rate thresholds and the analytical solution for the minimum deformation strain rate needed to suppress barotropic frontal wave development. The deformation strain rate threshold is dependent on the strength of the PV strip with strong PV strips able to overcome stronger deformation strain rates (leading to frontal wave development) than weaker PV strips.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transport of stratospheric air deep into the troposphere via convection is investigated numerically using the UK Met Office Unified Model. A convective system that formed on 27 June 2004 near southeast England, in the vicinity an upper level potential vorticity anomaly and a lowered tropopause, provides the basis for analysis. Transport is diagnosed using a stratospheric tracer that can either be passed through or withheld from the model’s convective parameterization scheme. Three simulations are performed at increasingly finer resolutions, with horizontal grid lengths of 12, 4, and 1 km. In the 12 and 4 km simulations, tracer is transported deeply into the troposphere by the parameterized convection. In the 1 km simulation, for which the convective parameterization is disengaged, deep transport is still accomplished but with a much smaller magnitude. However, the 1 km simulation resolves stirring along the tropopause that does not exist in the coarser simulations. In all three simulations, the concentration of the deeply transported tracer is small, three orders of magnitude less than that of the shallow transport near the tropopause, most likely because of the efficient dilution of parcels in the lower troposphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The global radiation balance of the atmosphere is still poorly observed, particularly at the surface. We investigate the observed radiation balance at (1) the surface using the ARM Mobile Facility in Niamey, Niger, and (2) the top of the atmosphere (TOA) over West Africa using data from the Geostationary Earth Radiation Budget (GERB) instrument on board Meteosat-8. Observed radiative fluxes are compared with predictions from the global numerical weather prediction (NWP) version of the Met Office Unified Model (MetUM). The evaluation points to major shortcomings in the NWP model's radiative fluxes during the dry season (December 2005 to April 2006) arising from (1) a lack of absorbing aerosol in the model (mineral dust and biomass burning aerosol) and (2) a poor specification of the surface albedo. A case study of the major Saharan dust outbreak of 6–12 March 2006 is used to evaluate a parameterization of mineral dust for use in the NWP models. The model shows good predictability of the large-scale flow out to 4–5 days with the dust parameterization providing reasonable dust uplift, spatial distribution, and temporal evolution for this strongly forced dust event. The direct radiative impact of the dust reduces net downward shortwave (SW) flux at the surface (TOA) by a maximum of 200 W m−2 (150 W m−2), with a SW heating of the atmospheric column. The impacts of dust on terrestrial radiation are smaller. Comparisons of TOA (surface) radiation balance with GERB (ARM) show the “dusty” forecasts reduce biases in the radiative fluxes and improve surface temperatures and vertical thermodynamic structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of the top‐of‐the‐atmosphere outgoing longwave radiation (OLR) for July 2003 from Meteosat‐7 are used to assess the performance of the numerical weather prediction version of the Met Office Unified Model. A significant difference is found over desert regions of northern Africa where the model emits too much OLR by up to 35 Wm−2 in the monthly mean. By cloud‐screening the data we find an error of up to 50 Wm−2 associated with cloud‐free areas, which suggests an error in the model surface temperature, surface emissivity, or atmospheric transmission. By building up a physical model of the radiative properties of mineral dust based on in situ, and surface‐based and satellite remote sensing observations we show that the most plausible explanation for the discrepancy in OLR is due to the neglect of mineral dust in the model. The calculations suggest that mineral dust can exert a longwave radiative forcing by as much as 50 Wm−2 in the monthly mean for 1200 UTC in cloud‐free regions, which accounts for the discrepancy between the model and the Meteosat‐7 observations. This suggests that inclusion of the radiative effects of mineral dust will lead to a significant improvement in the radiation balance of numerical weather prediction models with subsequent improvements in performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Met Office Unified Model is run for a case observed during Intensive Observation Period 18 (IOP18) of the Convective Storms Initiation Project (CSIP). The aims are to identify the physical processes that lead to perturbation growth at the convective scale in response to model-state perturbations and to determine their sensitivity to the character of the perturbations. The case is strongly upper-level forced but with detailed mesoscale/convective-scale evolution that is dependent on smaller-scale processes. Potential temperature is perturbed within the boundary layer. The effects on perturbation growth of both the amplitude and typical scalelength of the perturbations are investigated and perturbations are applied either sequentially (every 30 min throughout the simulation) or at specific times. The direct effects (within one timestep) of the perturbations are to generate propagating Lamb and acoustic waves and produce generally small changes in cloud parameters and convective instability. In exceptional cases a perturbation at a specific gridpoint leads to switching of the diagnosed boundary-layer type or discontinuous changes in convective instability, through the generation or removal of a lid. The indirect effects (during the entire simulation) are changes in the intensity and location of precipitation and in the cloud size distribution. Qualitatively different behaviour is found for strong (1K amplitude) and weak (0.01K amplitude) perturbations, with faster growth after sunrise found only for the weaker perturbations. However, the overall perturbation growth (as measured by the root-mean-square error of accumulated precipitation) reaches similar values at saturation, regardless of the perturbation characterisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of targeted sonde observations on the 1-3 day forecasts for northern Europe is evaluated using the Met Office four-dimensional variational data assimilation scheme and a 24 km gridlength limited-area version of the Unified Model (MetUM). The targeted observations were carried out during February and March 2007 as part of the Greenland Flow Distortion Experiment, using a research aircraft based in Iceland. Sensitive area predictions using either total energy singular vectors or an ensemble transform Kalman filter were used to predict where additional observations should be made to reduce errors in the initial conditions of forecasts for northern Europe. Targeted sonde data was assimilated operationally into the MetUM. Hindcasts show that the impact of the sondes was mixed. Only two out of the five cases showed clear forecast improvement; the maximum forecast improvement seen over the verifying region was approximately 5% of the forecast error 24 hours into the forecast. These two cases are presented in more detail: in the first the improvement propagates into the verification region with a developing polar low; and in the second the improvement is associated with an upper-level trough. The impact of cycling targeted data in the background of the forecast (including the memory of previous targeted observations) is investigated. This is shown to cause a greater forecast impact, but does not necessarily lead to a greater forecast improvement. Finally, the robustness of the results is assessed using a small ensemble of forecasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.