148 resultados para UHT and skimmed milk
Resumo:
Soybeans can be consumed directly as food, and in China hey are the major ingredient in food products such as tofu and soy milk, but direct consumption is small relative to their wider use in animal feed, and it is the requirement for livestock feed that drives international trade. Rapid growth of economies and population, especially in Asia, has led to increased demand for animal protein and cooking oil. This paper analyses the recent growth in supply of soybeans from North and South America to China, and considers the factors that may affect this trade in future; a contrast is made with supply from North and South America to Europe, which has not been increasing. The constraints preventing an increase in supply of soybeans to Europe are reviewed. The paper concludes with brief discussion of the factors which will affect world markets for soybeans and soybean products in future.
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein-Friesian cattle was collected across the year and blended (n=55), to maximize variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variable for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Althoug further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates.
Resumo:
Gross cystic breast disease (GCBD) is the most common benign breast disorder, but the molecular basis of cyst formation remains to be identified. If the use of aluminium-based antiperspirant salts is involved in the etiology of gross breast cyst formation, it might be expected that aluminium would be at elevated levels in human breast cyst fluid (BCF). Aluminium was measured by ICP-MS in 48 samples of BCF, 30 samples of human blood serum and 45 samples of human breast milk at different stages of lactation (colostrum, intermediate, mature). The median level of aluminium in apocrine type I BCF (n:= 27, 150 mu g I-1) was significantly higher than in transuclative type II BCF (n = 21, 32 mu g I-1; P < 0.0001). By comparison, aluminium measurements gave a median concentration of 6 mu g I-1 in human serum and 25 mu g I-1 in human breast milk, with no difference between colostrum, intermediate and mature milk. Levels of aluminium were significantly higher in both types of BCF than in human serum (P < 0.0001). However when compared with human breast milk, aluminium levels were only significantly higher in apocrine type I BCF (P < 0.0001) and not in transudative type II BCF (P = 0.152). It remains to be identified why such high levels of aluminium were found in the apocrine type I BCF and from where the aluminium originated. However, if aluminium-based antiperspirants are found to be the source and to play any causal role in development of breast cysts, then it might become possible to prevent this common breast disorder. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
PURPOSE: Consumption of sugar-reformulated products (commercially available foods and beverages that have been reduced in sugar content through reformulation) is a potential strategy for lowering sugar intake at a population level. The impact of sugar-reformulated products on body weight, energy balance (EB) dynamics and cardiovascular disease risk indicators has yet to be established. The REFORMulated foods (REFORM) study examined the impact of an 8-week sugar-reformulated product exchange on body weight, EB dynamics, blood pressure, arterial stiffness, glycemia and lipemia. METHODS: A randomized, controlled, double-blind, crossover dietary intervention study was performed with fifty healthy normal to overweight men and women (age 32.0 ± 9.8 year, BMI 23.5 ± 3.0 kg/m2) who were randomly assigned to consume either regular sugar or sugar-reduced foods and beverages for 8 weeks, separated by 4-week washout period. Body weight, energy intake (EI), energy expenditure and vascular markers were assessed at baseline and after both interventions. RESULTS: We found that carbohydrate (P < 0.001), total sugars (P < 0.001) and non-milk extrinsic sugars (P < 0.001) (% EI) were lower, whereas fat (P = 0.001) and protein (P = 0.038) intakes (% EI) were higher on the sugar-reduced than the regular diet. No effects on body weight, blood pressure, arterial stiffness, fasting glycemia or lipemia were observed. CONCLUSIONS: Consumption of sugar-reduced products, as part of a blinded dietary exchange for an 8-week period, resulted in a significant reduction in sugar intake. Body weight did not change significantly, which we propose was due to energy compensation.
Resumo:
The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.
Resumo:
This paper describes the use of pH and calcium ion electrodes for investigating factors affecting the heat stability of UHT milk with added calcium chloride. Calcium chloride was added to raw milk to manipulate ionic calcium and pH to within the range that may be typically encountered in raw milk of different compositions and microbial quality. Addition of only 5 mM calcium chloride was sufficient to induce considerable changes in pH, ionic calcium and ethanol stability and alter its stability to UHT treatment. There was a strong relationship between pH decrease and increase in ionic calcium when pH was reduced, whether by addition of calcium chloride or by acidification. Calcium chloride addition was found to increase sediment formation in UHT treated milk. However, sediment could be reduced by addition of stabilizers. Those most effective were ones which decreased ionic calcium and increased pH, such as trisodium citrate and disodium hydrogen phosphate. Sediment formation following UHT treatment was only slight for milk samples whose ethanol stability was greater than 80%.
Resumo:
Sediment formation was investigated during UHT treatment of goats' milk, subjected to indirect treatment at 140 degrees C for 2 s, with upstream homogenisation. Stabilisers evaluated were sodium hexametaphosphate (SHMP), trisodium citrate (TSC), disodium hydrogen orthophosphate (DSHP), and sodium dihydrogen orthophosphate (SDHP). With no added stabiliser, goats' milk produced a heavy sediment on UHT treatment. Addition of SDHP reduced pH, had little effect on ionic calcium and did not substantially reduce sediment. However, addition of SHMP, DSHP and TSC each reduced ionic calcium, increased ethanol stability and reduced sediment. Following stabiliser additions, there was a good correlation between ethanol stability and ionic calcium (R-2=0.85) but not between ethanol stability and pH (R-2=0.08). Overall, reducing ionic calcium reduced the amount of sediment formed for all these three stabilisers, although there was no single trend line between sediment formation and ionic calcium concentration. Sediment formation was not well correlated with pH for TSC or for SHMP, but it was for DSHP, making it the only stabiliser where sediment formation correlated well both with ionic calcium and pH, which might account for its effectiveness at higher ionic calcium levels. Sediment was much reduced when the temperature was reduced from 140 degrees C to 125 degrees C and 114 degrees C. There were no further changes in sediment on storage for two weeks. Analysis of the sediment showed that it was predominantly fat and protein, with a mass ratio ranging between 1.43:1 and 1.67:1. Its mineral content was usually less than 5% of dry weight. The maximum amounts of P and Ca were found to be 2.32% and 1.63%, respectively.
Resumo:
Bifidobacterium strains of human origin were screened for their ability to grow in milk and produce exopolysaccharides (EPS). Bifidobacterium strains were grown in low-fat UHT milk and were evaluated for their growth, acidification properties, EPS production and ability to increase the viscosity of fermented milk. The strains that grew well in milk were strains of Bifidobacterium breve and Bifidobacterium longum and B. longum subsp. longum. Among the 22 strains, EPS was produced by Bifidobacterium bifidum ALM 35, B. breve NCIMB 8807 (UCC 2003), B. longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 at concentrations ranging from 25 to 140 . The molecular mass and the composition varied considerably, depending on the strain. Analysis of the correlation between the apparent viscosity of the fermented milk and pH indicated that the EPS produced during the acidification of milk possibly contributed to the viscosity of the milk products.
Resumo:
Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2 mM), disodium hydrogen phosphate (DSHP, 10 mM) and trisodium citrate (TSC, 10 mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability.
Resumo:
Forty-multiparous Holstein cows were used in a 16-wk continuous design study to determine the effects of either selenium (Se) source, selenized yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060 Sel-Plex®) or sodium selenite (SS), or inclusion rate of SY on Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a TMR with 1:1 forage:concentrate ratio on a dry matter (DM) basis. There were four diets (T1-T4) which differed only in either source or dose of Se additive. Estimated total dietary Se for T1 (no supplement), T2 (SS), T3 (SY) and T4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28 day intervals and at each time point there were positive linear effects of SY on Se concentration in blood and milk. At day 112 blood and milk Se values for T1-T4 were 177, 208, 248, 279 ± 6.6 and 24, 38, 57, 72 ± 3.7 ng/g fresh material, respectively and indicate improved uptake and incorporation of Se from SY. While selenocysteine (SeCys) was the main selenised amino acid in blood its concentration was not markedly affected by treatment, but the proportion of total Se as selenomethionine (SeMet) increased with increasing inclusion rate of SY. In milk, there were no marked treatment effects on SeCys content, but Se source had a marked effect on the proportion of total Se as SeMet. At day 112 replacing SS (T2) with SY (T3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157 ng Se/g as the inclusion rate of SY increased further (T4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate effected the keeping quality of milk. At day 112, milk from T1, T2, and T3 was made into a hard cheese and Se source had a marked effect on total Se and the proportion of total Se comprised as either SeMet or SeCys. Replacing SS (T2) with SY (T3) increased total Se, SeMet and SeCys content from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g, respectively. Key words: dairy cow, milk and cheese, selenomethionine, selenocysteine, milk keeping quality
Resumo:
The objectives were to determine effects of graded levels of selenized yeast derived from a specific strain of Saccharomyces cerevisiae (CNCM I-3060) on animal performance and in selenium concentrations in the blood, milk, feces, and urine of dairy cows compared with sodium selenite; and to provide preliminary data on the proportion of selenium as selenomethionine in the milk and blood. Twenty Holstein cows were used in a 5 × 5 Latin square design study in which all cows received the same total mixed rations, which varied only in source or concentration of dietary selenium. There were 5 experimental treatments. Total dietary selenium of treatment 1, which received no added selenium, was 0.15 mg/kg of dry matter, whereas values for treatments 2, 3, and 4, derived from selenized yeast, were 0.27, 0.33, and 0.40 mg/kg of dry matter, respectively. Treatment 5 contained 0.25 mg of selenium obtained from sodium selenite/kg of dry matter. There were no significant treatment effects on animal performance, and blood chemistry and hematology showed few treatment effects. Regression analysis noted significant positive linear effects of increasing dietary selenium derived from selenized yeast on selenium concentrations in the milk, blood, urine, and feces. In addition, milk selenium results indicated improved bioavailability of selenium from selenized yeast, compared with sodium selenite. Preliminary analyses showed that compared with sodium selenite, the use of selenized yeast increased the concentration of selenomethionine in the milk and blood. There was no indication of adverse effects on cow health associated with the use of selenized yeast.
Resumo:
Dialysis and ultrafiltration were investigated as methods for measuring pH and ionic calcium and partitioning of divalent cations of milk at high temperatures. It was found that ionic calcium, pH, and total soluble divalent cations decreased as temperature increased between 20 and 80°C in both dialysates and ultrafiltration permeates. Between 90 and 110°C, ionic calcium and pH in dialysates continued to decrease as temperature increased, and the relationship between ionic calcium and temperature was linear. The permeabilities of hydrogen and calcium ions through the dialysis tubing were not changed after the tubing was sterilized for 1h at 120°C. There were no significant differences in pH and ionic calcium between dialysates from raw milk and those from a range of heat-treated milks. The effects of calcium chloride addition on pH and ionic calcium were measured in milk at 20°C and in dialysates collected at 110°C. Heat coagulation at 110°C occurred with addition of calcium chloride at 5.4mM, where pH and ionic calcium of the dialysate were 6.00 and 0.43mM, respectively. Corresponding values at 20°C were pH 6.66 and 2.10mM.
Resumo:
Different stabilising salts and calcium chloride were added to raw milk to evaluate changes in pH, ionic calcium, ethanol stability, casein micelle size and zeta potential. These milk samples were then sterilised at 121 °C for 15 min and stored for 6 months to determine how these properties changed. Addition of tri-sodium citrate (TSC) and di-sodium hydrogen phosphate (DSHP) to milk reduced ionic calcium, increased pH and increased ethanol stability in a concentration-dependent fashion. There was relatively little change in casein micelle size and a slight decrease in zeta potential. Sodium hexametaphosphate (SHMP) also reduced ionic calcium considerably, but its effect on pH was less noticeable. In contrast, sodium dihydrogen phosphate (SDHP) reduced pH but had little effect on ionic calcium. In-container sterilisation of these samples reduced pH, increased ethanol stability and increased casein micelle size, but had variable effects on ionic calcium; for DSHP and SDHP, ionic calcium decreased after sterilisation but, for SHMP, it remained little changed or increased. Milk containing 3.2 mM SHMP and more than 4.5 mM CaCl2 coagulated upon sterilisation. All other samples were stable but there were differences in browning, which increased in intensity as milk pH increased. Heat-induced sediment was not directly related to ionic calcium concentration, so reducing ionic calcium was not the only consideration in terms of improving heat stability. After 6 months of storage, the most acceptable product, in appearance, was that containing SDHP, as this minimised browning during sterilisation and further development of browning during storage.